// Numbas version: finer_feedback_settings {"navigation": {"allowregen": true, "onleave": {"message": "", "action": "none"}, "preventleave": true, "browse": true, "showresultspage": "oncompletion", "showfrontpage": true, "reverse": true}, "question_groups": [{"pickingStrategy": "all-ordered", "name": "Group", "pickQuestions": 1, "questions": [{"name": "Exact values for sin, cos, tan (acute, degrees)", "extensions": [], "custom_part_types": [], "resources": ["question-resources/exact_values.svg"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["exact values", "trigonometry"], "metadata": {"description": "
multiple choice testing sin, cos, tan of random(30, 45, 60) degrees
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator.
", "advice": "By drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ (and their reciprocals $\\csc$, $\\sec$, $\\cot$) for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.
\nSince we are asked about $\\var{theta}^\\circ$, we use the triangle on the leftright and the mnemonic SOH CAH TOA to determine:
\n$\\sin\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Opposite}}{\\text{Hypotenuse}}=\\;\\;\\dfrac{1}{2}$$\\sin\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Opposite}}{\\text{Hypotenuse}}=\\dfrac{1}{\\sqrt{2}}$$\\sin\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Opposite}}{\\text{Hypotenuse}}=\\dfrac{\\sqrt{3}}{2}$
\n$\\cos\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Adjacent}}{\\text{Hypotenuse}}=\\dfrac{\\sqrt{3}}{2}$$\\cos\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Adjacent}}{\\text{Hypotenuse}}=\\dfrac{1}{\\sqrt{2}}$$\\cos\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Adjacent}}{\\text{Hypotenuse}}=\\;\\;\\dfrac{1}{2}$
\n$\\tan\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Opposite}}{\\text{Adjacent}}\\;\\;=\\dfrac{1}{\\sqrt{3}}$$\\tan\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Opposite}}{\\text{Adjacent}}\\;\\;=\\;\\;1$$\\tan\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Opposite}}{\\text{Adjacent}}\\;\\;=\\sqrt{3}$
\nAlternatively, one can memorise the following table:
\n| \n | $30^\\circ$ | \n$45^\\circ$ | \n$60^\\circ$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
Since we are asked about $\\var{theta}^\\circ$, we use the $\\var{theta}^\\circ$ column of the table to determine that:
\n$\\sin(\\var{theta}^\\circ)=\\;\\;\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=\\;\\;\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=\\;\\;1$$\\tan(\\var{theta}^\\circ)=\\sqrt{3}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(30,45,60)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["theta"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\sin(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$\\dfrac{1}{2}$
", "$\\dfrac{1}{\\sqrt{2}}$
", "$\\dfrac{\\sqrt{3}}{2}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$1$
"], "matrix": ["if(theta=30,1,0)", "if(theta=45,1,0)", "if(theta=60,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\cos(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$\\dfrac{1}{2}$
", "$\\dfrac{1}{\\sqrt{2}}$
", "$\\dfrac{\\sqrt{3}}{2}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$1$
"], "matrix": ["if(theta=60,1,0)", "if(theta=45,1,0)", "if(theta=30,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\tan(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$\\dfrac{1}{2}$
", "$\\dfrac{1}{\\sqrt{2}}$
", "$\\dfrac{\\sqrt{3}}{2}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$1$
"], "matrix": ["0", "0", "0", "if(theta=30,1,0)", "if(theta=60,1,0)", "if(theta=45,1,0)"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Exact values for csc, sec, cot (acute, degrees)", "extensions": [], "custom_part_types": [], "resources": ["question-resources/exact_values.svg"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": [], "metadata": {"description": "multiple choice testing csc, sec, cot of random(30, 45, 60) degrees
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator.
", "advice": "Recall that $\\csc\\theta=\\dfrac{1}{\\sin\\theta}$, $\\sec\\theta=\\dfrac{1}{\\cos\\theta}$, and $\\cot\\theta=\\dfrac{1}{\\tan\\theta}$.
\n\nBy drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ (and their reciprocals $\\csc$, $\\sec$, $\\cot$) for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.
$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\;\\;2$$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\sqrt{2}$$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\dfrac{2}{\\sqrt{3}}$
\n$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\dfrac{2}{\\sqrt{3}}$$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\sqrt{2}$$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\;\\;2$
\n$\\cot\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\sqrt{3}$$\\cot\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\;\\;1$$\\cot\\left(\\var{theta}^\\circ\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\dfrac{1}{\\sqrt{3}}$
\nAlternatively, one can memorise the following table:
\n| \n | $30^\\circ$ | \n$45^\\circ$ | \n$60^\\circ$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
Since we are asked about $\\var{theta}^\\circ$, we use the $\\var{theta}^\\circ$ column of the table to determine that:
\n$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\sin\\left(\\var{theta}^\\circ\\right)}=\\;\\;2$$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\sin\\left(\\var{theta}^\\circ\\right)}=\\sqrt{2}$$\\csc\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\sin\\left(\\var{theta}^\\circ\\right)}=\\dfrac{2}{\\sqrt{3}}$
\n$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\cos\\left(\\var{theta}^\\circ\\right)}=\\dfrac{2}{\\sqrt{3}}$$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\cos\\left(\\var{theta}^\\circ\\right)}=\\sqrt{2}$$\\sec\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\cos\\left(\\var{theta}^\\circ\\right)}=\\;\\;2$
\n$\\cot\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\tan\\left(\\var{theta}^\\circ\\right)}=\\sqrt{3}$$\\cot\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\tan\\left(\\var{theta}^\\circ\\right)}=\\;\\;1$$\\cot\\left(\\var{theta}^\\circ\\right)=\\dfrac{1}{\\tan\\left(\\var{theta}^\\circ\\right)}=\\dfrac{1}{\\sqrt{3}}$
", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(30,45,60)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["theta"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\csc(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["if(theta=30,1,0)", "if(theta=45,1,0)", "if(theta=60,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\sec(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["if(theta=60,1,0)", "if(theta=45,1,0)", "if(theta=30,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\cot(\\var{theta}^\\circ)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["0", "0", "0", "if(theta=30,1,0)", "if(theta=60,1,0)", "if(theta=45,1,0)"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Unit circle definition", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": [], "metadata": {"description": "Unit circle definition of sin, cos, tan using degrees
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Let $A$ be the point $(1,0)$, $O$ be the origin $(0,0)$, and $B$ be a point on the unit circle (the circle centred at the origin, $O$, with radius 1).
\nSuppose that the line segment $OA$ would have to travel $\\theta$ degrees anti-clockwise around the origin to get to the line segment $OB$. Or in other words, $B$ is $\\theta$ degrees anti-clockwise from the positive $x$-axis.
", "advice": "The point on the unit circle, $\\theta$ degrees anti-clockwise from the positive $x$-axis, is $(\\cos(\\theta),\\sin(\\theta))$. This is the unit circle definition of sine and cosine. You can think of this as being a generalisation of the right-angled trigonometry that takes place in the first quadrant of the cartesian plane.
\n\nThe definition of $\\tan(\\theta)$ can be thought of as $\\dfrac{\\sin(\\theta)}{\\cos(\\theta)}$ but this is just the gradient of the line segment connecting the origin to the point on the unit circle.
\nThe following applet is for you to investigate the relationship between the trigonometric functions and the unit circle by moving the point $B$ around the circle.
\n\n", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What are the coordinates of the point $B$?
\n$B=\\Large($ [[0]], [[1]] $\\Large)$
\n\nNote: Suppose you wanted to enter $\\tan(\\theta)$, then you would type tan(theta) including the brackets.
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cos(theta)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "theta", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sin(theta)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "theta", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "What is the slope of the line segment $OB$?
\n$m_{OB}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "tan(theta)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "theta", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}, {"name": "Exact values for sin, cos, tan (0 to 330, degrees)", "extensions": ["geogebra"], "custom_part_types": [], "resources": ["question-resources/exact_values.svg", "question-resources/ASTCwhite.png"], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "tags": ["trig", "trigonometry", "Trigonometry"], "metadata": {"description": "exact value of sin, cos, tan of random(0,90,120,135,150,180,210,225,240,270,300,315,330) degrees
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example to input the exact value of $\\sin(60^\\circ)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2
", "advice": "Recall the unit circle definitions:
\nIn particular, the angle of $\\var{theta}^\\circ$ puts the point {textquadrant}.
\n{diagram}
Since this point falls on an axis and the point is on the unit circle, it is clear that its coordinates are $(\\var{cos({theta}*pi/180)}, \\var{sin({theta}*pi/180)})$. From these, we can conclude that
\n$\\sin(\\var{theta}^\\circ)=\\var{sin({theta}*pi/180)}$,
\n$\\cos(\\var{theta}^\\circ)=\\var{cos({theta}*pi/180)}$, and
\n$\\tan(\\var{theta}^\\circ)=\\dfrac{\\sin(\\var{theta}^\\circ)}{\\cos(\\var{theta}^\\circ)}=\\dfrac{\\var{sin({theta}*pi/180)}}{\\var{cos({theta}*pi/180)}}\\var{if(theta=90 or theta=270, \" which is undefined\",\" = \" + precround(tan(theta*pi/180),0))}.$
\nThe triangle {textquadrant} has the same side lengths as the related triangle in the first quadrant (they are congruent). Therefore, we can recall or use right-angled triangle trigonometry to determine the lengths of the triangle in the first quadrant and then change the signs as needed. Recall:
\nBy drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.
Alternatively, one can memorise the following table:
\n| \n | $30^\\circ$ | \n$45^\\circ$ | \n$60^\\circ$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
From the above, the triangle in the first quadrant tells us that:
\n$\\sin(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$$\\sin(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$
\n$\\tan(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{phi}^\\circ)=\\;\\;1$$\\tan(\\var{phi}^\\circ)=\\sqrt{3}$
\nSince $\\theta=\\var{theta}^\\circ$ puts us {textquadrant}, the $x$-coordinate (the cosine value) is positive,negative, and the $y$-coordinate (the sine value) is positivenegative. That is:
\n$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\;\\;1$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\nAn alternative approach is to use the mnemonic \"All Stations To Central\" or \"ASTC\" to recall which trig functions are positive in each quadrant (and hence which are negative):
\n
The exact value of $\\cos(\\var{theta}^\\circ)$ is [[1]].
\nIf $\\tan(\\var{theta}^\\circ)$ is defined, what is its exact value? Otherwise, enter undefined [[2]].
exact value of testing sin, cos, tan of angles that are negative or greater than 360 degrees that result in nice exact values.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator. In this question we require you input your answer without decimals and without entering the words sin, cos or tan. For example to input the exact value of $\\sin(60^\\circ)$, which is $\\dfrac{\\sqrt{3}}{2}$, you would input sqrt(3)/2
", "advice": "Recall the unit circle definitions:
\nIn particular, the angle of $\\var{omega}^\\circ$ is a complete revolution ($360^\\circ$) and then an additional $\\var{theta}^\\circ$ anticlockwiseis two complete revolutions ($2\\times 360^\\circ=720^\\circ$) and then an additional $\\var{theta}^\\circ$ anticlockwiseis $\\var{abs(omega)}^\\circ$ clockwise is a complete revolution ($360^\\circ$) clockwise and then an additional $\\var{abs(omega+360)}^\\circ$ clockwise is two complete revolutions ($2\\times 360^\\circ=720^\\circ$) clockwise and then an additional $\\var{abs(omega+720)}^\\circ$ clockwiseis three complete revolutions ($3\\times 360^\\circ$) clockwise which puts the point {textquadrant}.
\nTherefore, for trigonometry, working with $\\var{omega}^\\circ$ would be the same as working with $\\var{theta}^\\circ$.
\n{diagram}
Since this point falls on an axis and the point is on the unit circle, it is clear that its coordinates are $(\\var{cos({theta}*pi/180)}, \\var{sin({theta}*pi/180)})$. From these, we can conclude that
\n$\\sin(\\var{theta}^\\circ)=\\var{sin({theta}*pi/180)}$,
\n$\\cos(\\var{theta}^\\circ)=\\var{cos({theta}*pi/180)}$, and
\n$\\tan(\\var{theta}^\\circ)=\\dfrac{\\sin(\\var{theta}^\\circ)}{\\cos(\\var{theta}^\\circ)}=\\dfrac{\\var{sin({theta}*pi/180)}}{\\var{cos({theta}*pi/180)}}\\var{if(theta=90 or theta=270, \" which is undefined\",\" = \" + precround(tan(theta*pi/180),0))}.$
\nThe triangle {textquadrant} has the same side lengths as the related triangle in the first quadrant (they are congruent). Therefore, we can recall or use right-angled triangle trigonometry to determine the lengths of the triangle in the first quadrant and then change the signs as needed. Recall:
\nBy drawing the following triangles, we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ for the angles $30^\\circ$, $45^\\circ$ and $60^\\circ$.
\nAlternatively, one can memorise the following table:
\n| \n | $30^\\circ$ | \n$45^\\circ$ | \n$60^\\circ$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
From the above, the triangle in the first quadrant tells us that:
\n$\\sin(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$$\\sin(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{phi}^\\circ)=\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{phi}^\\circ)=\\;\\;\\dfrac{1}{2}$
\n$\\tan(\\var{phi}^\\circ)=\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{phi}^\\circ)=\\;\\;1$$\\tan(\\var{phi}^\\circ)=\\sqrt{3}$
\nSince $\\theta=\\var{theta}^\\circ$ puts us {textquadrant}, the $x$-coordinate (the cosine value) is positive,negative, and the $y$-coordinate (the sine value) is positivenegative. That is:
\n$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=\\phantom{-}\\sin(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=-\\cos(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\;\\;1$$\\tan(\\var{theta}^\\circ)=\\phantom{-}\\tan(\\var{phi}^\\circ)=\\phantom{-}\\sqrt{3}$
\n$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=\\;\\;-\\dfrac{1}{2}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{2}}$$\\sin(\\var{theta}^\\circ)=-\\sin(\\var{phi}^\\circ)=-\\dfrac{\\sqrt{3}}{2}$
\n$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{\\sqrt{3}}{2}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\phantom{-}\\dfrac{1}{\\sqrt{2}}$$\\cos(\\var{theta}^\\circ)=\\phantom{-}\\cos(\\var{phi}^\\circ)=\\;\\;\\phantom{-}\\dfrac{1}{2}$
\n$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\dfrac{1}{\\sqrt{3}}$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=\\;\\;-1$$\\tan(\\var{theta}^\\circ)=-\\tan(\\var{phi}^\\circ)=-\\sqrt{3}$
\nAn alternative approach is to use the mnemonic \"All Stations To Central\" or \"ASTC\" to recall which trig functions are positive in each quadrant (and hence which are negative):
\n
The exact value of $\\cos(\\var{omega}^\\circ)$ is [[1]].
\nIf $\\tan(\\var{omega}^\\circ)$ is defined, what is its exact value? Otherwise, enter undefined [[2]].
Solve a trigonometric equation
", "licence": "None specified"}, "statement": "Evaluate for all angles of $\\theta$ in the interval $0^\\circ \\leq \\theta < 360^\\circ $ satisfying:
", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"angle_radians": {"name": "angle_radians", "group": "Ungrouped variables", "definition": "switch(function_name='sin',arcsin(function_angle),\n function_name='cos',arccos(function_angle),\n function_name='tan',arctan(function_angle),\n 'error')", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "answers": {"name": "answers", "group": "Ungrouped variables", "definition": "switch(function_name='sin' and function_sign=1,[1,1,0,0],\n function_name='sin' and function_sign=-1,[0,0,1,1],\n function_name='cos'and function_sign=1,[1,0,0,1],\n function_name='cos'and function_sign=-1,[0,1,1,0],\n function_name='tan'and function_sign=1,[1,0,1,0],\n function_name='tan'and function_sign=-1,[0,1,0,1],\n 'error')", "description": "", "templateType": "anything", "can_override": false}, "valid_check": {"name": "valid_check", "group": "Ungrouped variables", "definition": "function_name='tan' || abs(b)$\\simplify{{a}{function}(theta)+{b} = 0}$
\n\nIn which quadrants do the solutions exist (select two)?
\n[[0]]
\nGive all angles below in degrees.
\n1st solution (lowest angle)
\n[[1]]$^\\circ$
\n2nd solution (highest angle)
\n[[2]]$^\\circ$
", "gaps": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "mark:\n apply(base_mark);\n switch(\n total_score = 2/2,\n positive_feedback(\"Both quadrants are correct.\"),\n total_score = 1/2,\n feedback(\"Only one of your quadrants is correct.\")\n , // otherwise\n negative_feedback(\"Both of your quadrants are incorrect.\")\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": "2", "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": "2", "maxAnswers": "2", "warningType": "prevent", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["Quadrant 1
", "Quadrant 2
", "Quadrant 3
", "Quadrant 4
"], "matrix": "answers"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{solution1}", "maxValue": "{solution1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{solution2}", "maxValue": "{solution2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}]}], "duration": 0, "name": "Trigonometriske funk", "percentPass": 0, "timing": {"allowPause": true, "timeout": {"message": "", "action": "none"}, "timedwarning": {"message": "", "action": "none"}}, "feedback": {"allowrevealanswer": true, "feedbackmessages": [], "showactualmark": true, "showtotalmark": true, "showanswerstate": true, "intro": "", "advicethreshold": 0, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "showQuestionGroupNames": false, "metadata": {"description": "Using the unit circle definition of sin, cos and tan, to calculate the exact value of trig functions evaluated at angles that depend on 0, 30, 45, 60 or 90 degrees.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "showstudentname": true, "type": "exam", "contributors": [{"name": "Andreas Holmstrom", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/285/"}, {"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Katy Dobson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/854/"}, {"name": "Paul Emanuel", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2551/"}], "extensions": ["geogebra"], "custom_part_types": [], "resources": [["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_zSw7Eeg.svg"], ["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_TSS5UyF.svg"], ["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_HBd4LtO.svg"], ["question-resources/exact_values.svg", "/srv/numbas/media/question-resources/exact_values_1QzU7wg.svg"], ["question-resources/ASTCwhite.png", "/srv/numbas/media/question-resources/ASTCwhite_0FVod00.png"], ["question-resources/ASTCwhite.png", "/srv/numbas/media/question-resources/ASTCwhite_muB6J7U.png"]]}