// Numbas version: finer_feedback_settings {"percentPass": 0, "question_groups": [{"pickQuestions": 1, "name": "Group", "pickingStrategy": "all-ordered", "questions": [{"name": "Kamila's copy of Power rule 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Kamila Yusufu", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2554/"}], "ungrouped_variables": ["a1", "a2", "b1", "b2", "c1"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Power rule
"}, "statement": "Differentiate the function:
\n\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x^{\\var{b2}}+\\var{c1}\\)
", "rulesets": {}, "parts": [{"showCorrectAnswer": true, "type": "gapfill", "variableReplacements": [], "prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "gaps": [{"showpreview": true, "variableReplacements": [], "vsetrangepoints": 5, "checkvariablenames": false, "marks": 1, "answer": "{a1}*{a2}*x^{{a2}-1}+{b1}*{b2}*x^{{b2}-1}", "showCorrectAnswer": true, "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrange": [0, 1], "expectedvariablenames": [], "checkingtype": "absdiff", "scripts": {}, "checkingaccuracy": 0.001}], "marks": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "functions": {}, "preamble": {"css": "", "js": ""}, "advice": "Apply the rule:
\n\\(y=ax^n\\,\\,\\,then\\,\\,\\,\\frac{dy}{dx}=nax^{n-1}\\)
\nIn this example
\n\\(f(x)=\\var{a1}x^{\\var{a2}}+\\var{b1}x^{\\var{b2}}+\\var{c1}\\)
\n\\(\\frac{df}{dx}=\\var{a2}*\\var{a1}x^{\\var{a2}-1}+\\var{b2}*\\var{b1}x^{\\var{b2}-1}\\)
\n\\(\\frac{dy}{dx}=\\simplify{{a2}*{a1}x^{{a2}-1}+{b2}*{b1}x^{{b2}-1}}\\)
", "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"b2": {"templateType": "randrange", "group": "Ungrouped variables", "definition": "random(1..5#1)", "name": "b2", "description": ""}, "c1": {"templateType": "randrange", "group": "Ungrouped variables", "definition": "random(3..18#1)", "name": "c1", "description": ""}, "b1": {"templateType": "randrange", "group": "Ungrouped variables", "definition": "random(2..14#1)", "name": "b1", "description": ""}, "a2": {"templateType": "randrange", "group": "Ungrouped variables", "definition": "random(5..12#1)", "name": "a2", "description": ""}, "a1": {"templateType": "randrange", "group": "Ungrouped variables", "definition": "random(2..10#1)", "name": "a1", "description": ""}}, "tags": [], "variable_groups": [], "type": "question"}, {"name": "Power rule 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "parts": [{"variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "marks": 0, "prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "type": "gapfill", "gaps": [{"variableReplacements": [], "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "type": "jme", "answer": "-{a1}*{a2}/x^{{a2}+1}+(1/{a3})x^{1/{a3}-1}", "scripts": {}, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "checkingtype": "absdiff", "showCorrectAnswer": true, "vsetrange": [0, 1], "marks": 1, "expectedvariablenames": []}]}], "metadata": {"description": "Power rule
", "licence": "Creative Commons Attribution 4.0 International"}, "advice": "\\(f(x)=\\frac{\\var{a1}}{x^{\\var{a2}}}+\\sqrt[\\var{a3}]{x}\\)
\n\\(f(x)=\\var{a1}x^{-\\var{a2}}+{x}^{\\frac{1}{\\var{a3}}}\\)
\n\\(\\frac{df}{dx}=-\\var{a2}*\\var{a1}x^{-\\var{a2}-1}+\\frac{1}{\\var{a3}}{x}^{\\frac{1}{\\var{a3}}-1}\\)
\n\\(\\frac{df}{dx}=-\\simplify{{a2}*{a1}x^{-{a2}-1}}+\\frac{1}{\\var{a3}}{x}^{\\simplify{{1-{a3}}/{a3}}}\\)
\n", "ungrouped_variables": ["a1", "a2", "a3"], "tags": [], "functions": {}, "rulesets": {}, "variables": {"a2": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a2", "definition": "random(2..8#1)"}, "a3": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a3", "definition": "random(3..6#1)"}, "a1": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "a1", "definition": "random(6..18#1)"}}, "statement": "Differentiate the function:
\n\\(f(x)=\\frac{\\var{a1}}{x^{\\var{a2}}}+\\sqrt[\\var{a3}]{x}\\)
", "type": "question"}, {"name": "Slope of a curve at a point", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "preamble": {"js": "", "css": ""}, "statement": "Calculate the slope of the curve
\n\\(f(x)=\\var{a}x^3-\\var{b}x^2+\\var{c}x+\\var{d}\\)
\nat the point where \\(x=\\var{f}\\).
", "parts": [{"prompt": "Input your answer correct to one decimal place.
\n\\(slope = \\) [[0]]
", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "gaps": [{"notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "showCorrectAnswer": true, "scripts": {}, "type": "numberentry", "mustBeReduced": false, "precisionPartialCredit": 0, "minValue": "3*{a}*{f}^2-2*{b}*{f}+{c}", "customMarkingAlgorithm": "", "allowFractions": false, "marks": 1, "precisionType": "dp", "precision": "1", "correctAnswerStyle": "plain", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "variableReplacements": [], "showPrecisionHint": false, "precisionMessage": "You have not given your answer to the correct precision.", "maxValue": "3*{a}*{f}^2-2*{b}*{f}+{c}", "mustBeReducedPC": 0, "unitTests": []}], "variableReplacements": [], "showCorrectAnswer": true, "sortAnswers": false, "unitTests": [], "customMarkingAlgorithm": "", "marks": 0}], "metadata": {"description": "Slope of a curve at a point
", "licence": "Creative Commons Attribution 4.0 International"}, "variables": {"c": {"description": "", "templateType": "randrange", "name": "c", "definition": "random(5..12#1)", "group": "Ungrouped variables"}, "f": {"description": "", "templateType": "randrange", "name": "f", "definition": "random(0..4#1)", "group": "Ungrouped variables"}, "b": {"description": "", "templateType": "randrange", "name": "b", "definition": "random(2..10#1)", "group": "Ungrouped variables"}, "d": {"description": "", "templateType": "randrange", "name": "d", "definition": "random(10..20#1)", "group": "Ungrouped variables"}, "a": {"description": "", "templateType": "randrange", "name": "a", "definition": "random(2..6#1)", "group": "Ungrouped variables"}}, "ungrouped_variables": ["a", "b", "c", "d", "f"], "advice": "\\(f(x)=\\var{a}x^3-\\var{b}x^2+\\var{c}x+\\var{d}\\)
\nThe equation for the slope of a curve is found by differentiating the function.
\n\\(\\frac{df}{dx}=3*\\var{a}x^2-2*\\var{b}x+\\var{c}\\)
\nTo find the slope at a particular point we simply insert the x-coordinate value into this equation.
\nSlope = \\(3*\\var{a}*\\var{f}^2-2*\\var{b}*\\var{f}+\\var{c}\\)
\nSlope = \\(\\simplify{3*{a}*{f}^2-2*{b}*{f}+{c}}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "functions": {}, "rulesets": {}, "type": "question"}, {"name": "Turning points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "preamble": {"css": "", "js": ""}, "parts": [{"type": "gapfill", "marks": 0, "prompt": "Input the smaller of the two \\(x\\) values.
\n\\(x=\\) [[0]]
\nInput the larger of the two \\(x\\) values.
\n\\(x=\\) [[1]]
", "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "allowFractions": false, "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "{a}", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "maxValue": "{a}", "correctAnswerStyle": "plain"}, {"marks": 1, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "allowFractions": false, "correctAnswerFraction": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "{b}", "variableReplacements": [], "scripts": {}, "showCorrectAnswer": true, "maxValue": "{b}", "correctAnswerStyle": "plain"}], "showFeedbackIcon": true, "variableReplacements": [], "scripts": {}, "showCorrectAnswer": false}], "tags": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "The function \\(f(x)=2x^3-\\simplify{3*({a}+{b})x^2+6*{a}*{b}x}+\\var{c}\\) has two turning points.
", "ungrouped_variables": ["a", "b", "c"], "advice": "\\(f(x)=2x^3-\\simplify{3*({a}+{b})x^2+6*{a}*{b}x}+\\var{c}\\)
\nTo locate a turning point, differentite the function, set equal to zero and solve.
\n\\(f'(x)=6x^2-\\simplify{6*({a}+{b})x+6*{a}*{b}}=0\\)
\nDivide across by 6 to get the quadratic equation
\n\\(x^2-\\simplify{({a}+{b})x+{a}*{b}}=0\\)
\nThis has factors
\n\\((x-\\var{a})(x-\\var{b})=0\\)
\n\\(x-\\var{a}=0\\) or \\(x-\\var{b}=0\\)
\n\\(x=\\var{a}\\) or \\(x=\\var{b}\\)
", "metadata": {"description": "Turning points of a cubic function
", "licence": "Creative Commons Attribution 4.0 International"}, "functions": {}, "rulesets": {}, "variable_groups": [], "variables": {"a": {"definition": "random(1..5#1)", "templateType": "randrange", "description": "", "name": "a", "group": "Ungrouped variables"}, "c": {"definition": "random(1..15#1)", "templateType": "randrange", "description": "", "name": "c", "group": "Ungrouped variables"}, "b": {"definition": "random(6..11#1)", "templateType": "randrange", "description": "", "name": "b", "group": "Ungrouped variables"}}, "type": "question"}, {"name": "Chain rule 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\\(f(x)=({\\var{a2}x^{\\var{a3}}+\\var{a4}})^\\var{a1}\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=u^\\var{a1}\\)
\n\\(\\frac{df}{du}=\\var{a1}u^{\\var{a1}-1}\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}u^{\\simplify{{a1}-1}}.\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}({\\var{a2}x^{\\var{a3}}+\\var{a4}})^{\\simplify{{a1}-1}}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\)[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a2}*{a3}x^{{a3}-1})({a2}x^{{a3}}+{a4})^{{a1}-1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=({\\var{a2}x^{\\var{a3}}+\\var{a4}})^\\var{a1}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a1": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..4#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a4": {"definition": "random(1..14#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Product rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a1", "a2", "a3", "a4", "a5"], "tags": [], "advice": "\\(f(x)=(\\var{a1}x^\\var{a2}+\\var{a3})e^{\\var{a4}x+\\var{a5}}\\)
\nRecall the product rule if \\(f(x)=u.v\\) where \\(u\\) and \\(v\\) are both functions of \\(x\\) then
\n\\(\\frac{df}{dx}=v.\\frac{du}{dx}+u.\\frac{dv}{dx}\\)
\nlet \\(u=\\var{a1}x^\\var{a2}+\\var{a3}\\) and \\(v=e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{du}{dx}=\\var{a2}*\\var{a1}x^{\\var{a2}-1}\\) and \\(\\frac{dv}{dx}=\\var{a4}*e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{df}{dx}=e^{\\var{a4}x+\\var{a5}}*\\var{a2}*\\var{a1}x^{\\var{a2}-1}+(\\var{a1}x^\\var{a2}+\\var{a3})*\\var{a4}*e^{\\var{a4}x+\\var{a5}}\\)
\n\\(\\frac{df}{dx}=\\simplify{e^({a4}x+{a5})*{a1}*{a2}x^{{a2}-1}+({a1}x^{a2}+{a3})*{a4}*e^({a4}x+{a5})}\\)
\n\\(\\frac{df}{dx}=(\\simplify{{a1}*{a4}x^{a2}+{a1}*{a2}x^{{a2}-1}+{a3}*{a4}})\\simplify{e^({a4}x+{a5})}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx}=\\)[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a1}*{a4}x^{a2}+{a1}*{a2}x^{{a2}-1}+{a3}*{a4})*e^({a4}x+{a5})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function
\n\\(f(x)=(\\var{a1}x^\\var{a2}+\\var{a3})e^{\\var{a4}x+\\var{a5}}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a1": {"definition": "random(2..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a3": {"definition": "random(1..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a3", "description": ""}, "a2": {"definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": ""}, "a5": {"definition": "random(4..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a5", "description": ""}, "a4": {"definition": "random(2..8#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a4", "description": ""}}, "metadata": {"description": "Product rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "functions": {}, "ungrouped_variables": ["a", "b", "c", "f", "d"], "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\\(f(x)=\\frac{\\var{a}x^{\\var{b}}+\\var{f}}{\\var{c}cos(\\var{d}x)}\\)
\nRecall the quotient rule: if \\(y=\\frac{u}{v}\\) where \\(u\\) and \\(v\\) are both functions of \\(x\\) then
\n\\(\\frac{dy}{dx}=\\frac{v\\frac{du}{dx}-u\\frac{dv}{dx}}{v^2}\\)
\nLet \\(u=\\var{a}x^{\\var{b}}+\\var{f}\\) and \\(v=\\var{c}cos(\\var{d}x)\\)
\nthen \\(\\frac{du}{dx}=\\var{b}*\\var{a}x^{\\var{b}-1}\\) and \\(\\frac{dv}{dx}=-\\var{d}*\\var{c}sin(\\var{d}x)\\)
\nPutting these results together as shown in the rule gives:
\n\\(\\frac{df}{dx}=\\frac{(\\var{c}cos(\\var{d}x))*\\var{b}*\\var{a}x^{\\var{b}-1}-(\\var{a}x^{\\var{b}}+\\var{f})*(-\\var{d}*\\var{c}sin(\\var{d}x))}{(\\var{c}cos(\\var{d}x))^2}\\)
\n\\(\\frac{df}{dx}=\\frac{\\simplify{({c}*cos({d}x))*{b}*{a}x^{{b}-1}+({a}x^{{b}}+{f})*({c}*{d}*sin({d}x))}}{(\\var{c}*cos(\\var{d}x))^2}\\)
", "rulesets": {}, "parts": [{"prompt": "\\(\\frac{df}{dx} = \\) [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({c}*cos({d}*x)*{a}*{b}*x^({b}-1)+({a}*x^{b}+{f})*{c}*{d}*sin({d}*x))/({c}*cos({d}*x))^2", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the function:
\n\\(f(x)=\\frac{\\var{a}x^{\\var{b}}+\\var{f}}{\\var{c}cos(\\var{d}x)}\\)
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..12#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(2..7#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "d", "description": ""}, "f": {"definition": "random(1..11#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "f", "description": ""}}, "metadata": {"description": "Quotient rule
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question"}, {"name": "Rate of change", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "ungrouped_variables": ["a", "b"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Rate of change problem involving velocity & acceleration
"}, "statement": "A missile is launched straight up in the air. The height of the missile, \\(h\\) metres, above the ground \\(t\\) seconds after the launch button is pressed is given by:
\n\\(h=\\var{a}t-4.9t^2\\)
", "rulesets": {}, "variable_groups": [], "functions": {}, "preamble": {"css": "", "js": ""}, "advice": "\\(h=\\var{a}t-4.9t^2\\)
\nRecall that speed is the rate of change of position with respect to time i.e. \\(v=\\frac{dh}{dt}\\)
\n\\(v=\\frac{dh}{dt}=\\var{a}-2*4.9t\\)
\nwhen \\(t=\\var{b}\\)
\n\\(v=\\var{a}-2*4.9*\\var{b}\\)
\n\\(v=\\simplify{{a}-9.8*{b}}m/s\\)
\n\nThe missile will reach its maximum height when its speed = 0. i.e. \\(v=\\frac{dh}{dt}=\\var{a}-2*4.9t=0\\)
\n\\(\\var{a}=9.8t\\)
\n\\(t=\\var{a}/9.8\\)
\nThe maximum height reached will occur when \\(t=\\simplify{{a}/9.8}\\)
\n\\(h=\\var{a}*\\left(\\simplify{{a}/9.8}\\right)-4.9*\\left(\\simplify{{a}/9.8}\\right)^2\\)
\n\\(h=\\simplify{{a}^2/19.6}\\)
\n\\(h=\\simplify{{{a}/{19.6}^0.5}^2}\\)
\n\n", "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"b": {"templateType": "randrange", "description": "", "definition": "random(3..10#1)", "name": "b", "group": "Ungrouped variables"}, "a": {"templateType": "randrange", "description": "", "definition": "random(100..300#5)", "name": "a", "group": "Ungrouped variables"}}, "tags": [], "parts": [{"showCorrectAnswer": true, "type": "gapfill", "variableReplacements": [], "prompt": "Calculate the speed of the missile (m/s) \\(\\var{b}\\) seconds after launch. Give your answer correct to one decimal place.
\n\\(v = \\) [[0]]m/s
\nWhat is the maximum height achieved by this missile? Give your answer correct to one decimal place.
\n\\(h = \\) [[1]]m
", "gaps": [{"precisionPartialCredit": 0, "variableReplacements": [], "precisionType": "dp", "correctAnswerFraction": false, "showPrecisionHint": false, "strictPrecision": false, "allowFractions": false, "scripts": {}, "minValue": "{a}-9.8*{b}", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "precision": "1", "marks": 1, "maxValue": "{a}-9.8*{b}", "precisionMessage": "You have not given your answer to the correct precision."}, {"precisionPartialCredit": 0, "variableReplacements": [], "precisionType": "dp", "correctAnswerFraction": false, "showPrecisionHint": false, "strictPrecision": false, "allowFractions": false, "scripts": {}, "minValue": "{a}^2/19.6", "showCorrectAnswer": true, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "precision": "1", "marks": 1, "maxValue": "{a}^2/19.6", "precisionMessage": "You have not given your answer to the correct precision."}], "marks": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "type": "question"}]}], "feedback": {"allowrevealanswer": true, "intro": "", "showanswerstate": true, "showactualmark": true, "showtotalmark": true, "feedbackmessages": [], "advicethreshold": 0, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "name": "Blathnaid's copy of NUMBAS - CW -Differentiation", "timing": {"allowPause": true, "timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}}, "duration": 0, "metadata": {"description": "This quiz asks questions on basic techniques of differentation and some introductory applications.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "showstudentname": true, "navigation": {"browse": true, "preventleave": true, "showresultspage": "oncompletion", "reverse": true, "showfrontpage": true, "onleave": {"action": "none", "message": ""}, "allowregen": true}, "type": "exam", "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}, {"name": "Katy Dobson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/854/"}, {"name": "Nick Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2416/"}, {"name": "Kamila Yusufu", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2554/"}, {"name": "Ha Nee Yeoum", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2565/"}], "extensions": [], "custom_part_types": [], "resources": []}