// Numbas version: finer_feedback_settings {"name": "Luis's copy of Integration by substitution", "timing": {"allowPause": true, "timedwarning": {"message": "", "action": "none"}, "timeout": {"message": "", "action": "none"}}, "navigation": {"onleave": {"message": "", "action": "none"}, "showfrontpage": true, "preventleave": true, "showresultspage": "oncompletion", "browse": true, "reverse": true, "allowregen": true}, "allQuestions": true, "duration": 0, "type": "exam", "questions": [], "shuffleQuestions": false, "feedback": {"showactualmark": true, "showanswerstate": true, "advicethreshold": 0, "allowrevealanswer": true, "showtotalmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "metadata": {"notes": "", "description": "

Find an integral by choosing a suitable substitution.

", "licence": "Creative Commons Attribution 4.0 International"}, "percentPass": 0, "showQuestionGroupNames": false, "pickQuestions": 0, "question_groups": [{"questions": [{"name": "Calculate definite integral with a hyperbolic substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "description": "", "name": "tol"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "a"}, "valacc": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(1/a)*ln((2*a+(4a^2-1)^(1/2))/(a+(a^2-1)^(1/2)))", "description": "", "name": "valacc"}, "val": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(valacc,2)", "description": "", "name": "val"}}, "ungrouped_variables": ["a", "b", "tol", "val", "valacc"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"displayType": "radiogroup", "choices": ["$\\textrm{arcsinh}(x)+C$", "$\\textrm{arccosh}(x)+C$", "$\\textrm{arctanh}(x)+C$"], "displayColumns": 0, "prompt": "

First, specify the answer to $\\displaystyle{\\int \\frac{1}{\\sqrt{x^2-1}}dx}$:

", "distractors": ["", "", ""], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 1, "showCorrectAnswer": true, "matrix": [0, 1, 0], "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "val+tol", "minValue": "val-tol", "correctAnswerFraction": false, "marks": 6, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Use your answer from above to evaluate the required integral.

\n

$I=\\;\\;$[[0]]

\n

Input your answer to $2$ decimal places.

", "showCorrectAnswer": true, "marks": 0}], "statement": "

In this question the aim is to use hyperbolic functions to find the value of:
\\[I=\\int_{\\var{b}}^{\\var{2*b}} \\left(\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}}\\right)\\;dx\\]

", "tags": ["arccosh", "calculus", "Calculus", "checked2015", "cr1", "definite integration", "hyperbolic functions", "integration", "integration by substitution", "inverse hyperbolic functions", "MAS1601", "standard integrals", "Steps", "steps", "substitution", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

30/06/2012:

\n

Added, edited tags

\n

Slight change to prompt.

\n

Could include standard integral in Show steps (once Show steps is available)

\n

19/07/2012:

\n

Added description.

\n

Changed Advice on the standard integral - so that it makes sense!

\n

Added Show steps information on the standard integral.

\n

Checked calculation.

\n

Set new tolerance variable tol=0 for the numeric input.

\n

23/07/2012:

\n

Added tags.

\n

Solution always requires arccosh(x) and not arcsinh(x) or arctanh(x). Is this on purpose?

\n

 Question appears to be working correctly.

\n

22/12/2012:(WHF)

\n

Checked calculation, OK. Added tested1 tag.

\n

Checked rounding, OK. Added cr1 tag.

\n

 

\n



\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find (hyperbolic substitution):
$\\displaystyle \\int_{b}^{2b} \\left(\\frac{1}{\\sqrt{a^2x^2-b^2}}\\right)\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

\\[I=\\int_{\\var{b}}^{\\var{2*b}} \\left(\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}}\\right)\\;dx\\]

\n

To solve this, we will employ the standard integral:\\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]

\n

We wish to rewrite the integrand of $I$ such that it is of the form $\\displaystyle{\\frac{A}{\\sqrt{x^2-1}}}$ ($A$ is a constant) and hence we can use the standard integral. Let us rearrange the integrand into this form:

\n

\\[\\begin{eqnarray*}\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}} &=& \\frac{1}{\\sqrt{\\simplify[std]{({a}x)^2-{b^2}}}} = \\frac{1}{\\sqrt{\\simplify[std]{{b^2}(({a}x/{b})^2-1)}}} \\\\ &=& \\frac{1}{\\var{b}\\sqrt{\\simplify[std]{(({a}x/{b})^2-1)}}} = \\frac{1}{\\var{b}\\sqrt{\\simplify[std]{(v^2-1)}}}\\end{eqnarray*} \\]

\n

where we have made the substitution $\\displaystyle{v = \\simplify[std]{{a}x/{b}}}$.  Following this then $\\displaystyle{dx = \\simplify[std]{{b}/{a}}}dv$.  We can then evaluate our integral in terms of $v$ (being careful to modify their limits of integration from $x$ to $v$):

\n

\\[\\begin{eqnarray*} I &=& \\int_{\\var{a}}^{\\var{2*a}}\\frac{1}{\\var{b}\\sqrt{v^2-1}}\\simplify[std]{{b}/{a}}dv \\\\&=&\\frac{1}{\\var{a}}\\int_{\\var{a}}^{\\var{2*a}}\\frac{1}{\\sqrt{v^2-1}}\\;dv\\\\ &=&\\frac{1}{\\var{a}}\\left[\\simplify{arccosh(v)}\\right]_{\\var{a}}^{\\var{2*a}}\\\\ &=&\\var{val} \\end{eqnarray*} \\] to 2 decimal places.

"}, {"name": "Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "({a}+{b}*cos(x))^{m+1}/{-b*(m+1)}+C", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

\\[I=\\simplify[std]{Int( sin(x)*({a} + {b}*cos(x))^{m},x)}\\]

\n\t\t\t

Input all numbers as integers or fractions.

\n\t\t\t

$I=\\;$[[0]]

\n\t\t\t

Input the constant of integration as $C$.

\n\t\t\t

Click on Show steps if you need help. You will lose 1 mark if you do so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

Try the substitution $u=\\simplify[std]{{a}+{b}cos(x)}$

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n\t

Find the following integral.

\n\t

Input the constant of integration as $C$.

\n\t

Input all numbers as integers or fractions not as decimals.

\n\t", "tags": ["Calculus", "MAS1601", "Steps", "checked2015", "constant of integration", "integrating trigonometric functions", "integration", "integration by substitution", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

2/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Checked calculation. OK.

\n\t\t

Added information about Show steps in prompt content area. 

\n\t\t

Got rid of a redundant ruleset. !noLeadingMinus added to std ruleset.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int \\sin(x)(a+ b\\cos(x))^{m}\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\t

This exercise is best solved by using substitution.
Note that if we let $u=\\simplify[std]{{a}+{b}cos(x)}$ then $du=\\simplify[std]{({-b}*sin(x))*dx }$
Hence we can replace $\\sin(x)\\;dx$ by $\\frac{1}{\\var{-b}}\\;du$.

\n\t \n\t \n\t \n\t

Hence the integral becomes:

\n\t \n\t \n\t \n\t

\\[\\begin{eqnarray*} I&=&\\simplify[std]{Int((1/{-b})u^{m},u)}\\\\\n\t \n\t &=&\\simplify[std]{(1/{-b})u^{m+1}/{m+1}+C}\\\\\n\t \n\t &=& \\simplify[std]{({a}+{b}*cos(x))^{m+1}/{-b*(m+1)}+C}\n\t \n\t \\end{eqnarray*}\\]

\n\t \n\t \n\t"}, {"name": "Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "b1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b1=a,b1+1,b1)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "c"}}, "ungrouped_variables": ["a", "c", "b", "b1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "({c}/sqrt({b}))*arcsin((sqrt({b})/sqrt({a}))*x)+C", "vsetrange": [0, 0.25], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions or surds (such as sqrt(2) for $\\sqrt{2}$).

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

\\[I=\\simplify[std]{Int(({c} / (sqrt({a}-{b}x^2))),x)}\\]

\n\t\t\t

$I=\\;$[[0]]

\n\t\t\t

Input all numbers as integers, fractions or surds. No decimal numbers. You input surds, for example, $\\sqrt{2}$ by writing sqrt(2).

\n\t\t\t

Input the constant of integration as $C$.

\n\t\t\t

You can get help by clicking on Show steps. You will lose 1 mark if you do so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

Try the substitution $\\displaystyle \\simplify[std]{u=(sqrt({b})/sqrt({a}))*x}$ and then consider the standard integral \\[\\int \\frac{dx}{\\sqrt{1-x^2}}=\\arcsin(x)+C\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n\t

Find the following integral.

\n\t

 

\n\t", "tags": ["Calculus", "MAS1601", "Steps", "arcsin", "checked2015", "constant of integration", "integration", "integration by substitution", "inverse trigonometric functions", "standard integrals", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

2/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Checked calculation. OK.

\n\t\t

Added information about Show steps in prompt content area. 

\n\t\t

Corrected error in Show steps, the substitution was the wrong way round.

\n\t\t

Simplified the presentation of Advice.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int \\frac{c}{\\sqrt{a-bx^2}}\\;dx$. Solution involves the inverse trigonometric function $\\arcsin$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t

For the integral \\[I=\\simplify[std]{Int((({c}) / (sqrt({a}-{b}x^2))),x)}\\] use the substitution $\\displaystyle \\simplify[std]{u=(sqrt({b})/sqrt({a}))*x}$
so that \\[\\simplify[all,!sqrtProduct,fractionNumbers]{sqrt({a}-{b}x^2)=sqrt({a}-{b}*({a}/{b})*u^2)=sqrt({a}-{a}*u^2)=sqrt({a})*sqrt(1-u^2)}\\]

\n\t

We have $\\displaystyle \\simplify[std]{du=(sqrt({b})/sqrt({a}))dx}$ and we get
\\[\\begin{eqnarray*}I&=&\\simplify[std]{({c}*(sqrt({a})/sqrt({b})))*Int((1 / ( sqrt({a})*sqrt(1-u^2) )),u)}\\\\  &=&\\simplify[std]{({c}/sqrt({b}))*Int((1 / (sqrt(1-u^2))),u)}\\\\ &=&\\simplify[std]{({c}/sqrt({b}))*arcsin(u)+C}\\\\ &=&\\simplify[std]{({c}/sqrt({b}))*arcsin((sqrt({b})/sqrt({a}))*x)+C} \\end{eqnarray*}\\]
on replacing $u$ by $\\displaystyle \\simplify[std]{(sqrt({b})/sqrt({a}))*x}$

\n\t"}, {"name": "Integral by hyperbolic substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "description": "", "name": "tol"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "a"}, "valacc": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(1/a)*ln((2*a+(4a^2-1)^(1/2))/(a+(a^2-1)^(1/2)))", "description": "", "name": "valacc"}, "val": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(valacc,2)", "description": "", "name": "val"}}, "ungrouped_variables": ["a", "b", "valacc", "val", "tol"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "val+tol", "minValue": "val-tol", "correctAnswerFraction": false, "marks": 3, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

$I=\\;\\;$[[0]]

\n

Input your answer to $2$ decimal places.

\n

Show steps has some information on the standard integral you may need. You will lose no marks in looking at this.

", "steps": [{"type": "information", "prompt": "

Use the standard integral: \\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Use hyperbolic functions to find the value of:
\\[I=\\int_{\\var{b}}^{\\var{2*b}} \\left(\\frac{1}{\\sqrt{\\simplify[std]{{a^2}x^2-{b^2}}}}\\right)\\;dx\\]

", "tags": ["arccosh", "Calculus", "checked2015", "definite integration", "hyperbolic functions", "integration", "integration by substitution", "inverse hyperbolic functions", "MAS1601", "standard integrals", "Steps", "substitution"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

30/06/2012:

\n

Added, edited tags

\n

Slight change to prompt.

\n

Could include standard integral in Show steps (once Show steps is available)

\n

19/07/2012:

\n

Added description.

\n

Changed Advice on the standard integral - so that it makes sense!

\n

Added Show steps information on the standard integral.

\n

Checked calculation.

\n

Set new tolerance variable tol=0 for the numeric input.

\n

23/07/2012:

\n

\n

Added tags.

\n

\n

Solution always requires arccosh(x) and not arcsinh(x) or arctanh(x). Is this on purpose?

\n

 

\n

 

\n

Question appears to be working correctly.

\n

 

\n



\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find (hyperbolic substitution):
$\\displaystyle \\int_{b}^{2b} \\left(\\frac{1}{\\sqrt{a^2x^2-b^2}}\\right)\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

This is the standard integral we use: \\[\\int \\frac{1}{\\sqrt{x^2-1}}\\;dx=\\simplify{arccosh(x)+C}\\]

\n

For this example if we make the substitution $\\displaystyle{x = \\simplify[std]{{b}v/{a}}}$ in our integral then we get:

\n

\\[\\begin{eqnarray*} I &=&\\frac{1}{\\var{a}}\\int_{\\var{a}}^{\\var{2*a}}\\frac{1}{\\sqrt{v^2-1}}\\;dv\\\\ &=&\\frac{1}{\\var{a}}\\left[\\simplify{arccosh(v)}\\right]_{\\var{a}}^{\\var{2*a}}\\\\ &=&\\var{val} \\end{eqnarray*} \\] to 2 decimal places.

"}, {"name": "Integration by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "ceil(b^2/4a+random(1..5))", "description": "", "name": "c"}}, "ungrouped_variables": ["a", "c", "b", "s1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "ln(abs((({a} * (x ^ 2)) + ({b} * x) + {c})))+C", "musthave": {"message": "

Note that \\[\\int \\frac{1}{x}\\;dx=\\ln(|x|)+C\\] and you must input the absolute value of the argument of the natural logarithm. You input the absolute value using abs, for example abs(x)=$\\simplify{abs(x)}$

", "showStrings": false, "partialCredit": 0, "strings": ["abs"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

\\[I=\\simplify[std]{Int(({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c}),x)}\\]

\n

$I=\\;$[[0]]

\n

Input all numbers as integers or fractions.

\n

Do not forget to include the constant of integration $C$.

\n ", "steps": [{"type": "information", "prompt": "\n

Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$

\n

Note that \\[\\int \\frac{1}{x}\\;dx=\\ln(|x|)+C\\] and you must input the absolute value of the argument of the natural logarithm. You input the absolute value using abs, for example abs(x)=$\\simplify{abs(x)}$

\n ", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n

Find the following integral.

\n

You must input the constant of integration as $C$.

\n

Input all numbers as integers or fractions.

\n

You can click on Show steps to get a hint. You will lose 1 mark if you do so.

\n

Note that $\\displaystyle \\int \\frac{1}{x}\\;dx=\\ln(|x|)+C$ and you must include the absolute value in the argument of $\\ln$. You input $|x|$ as abs(x).

\n ", "tags": ["calculus", "Calculus", "checked2015", "indefinite integral", "indefinite integration", "integration", "integration by substitution", "logarithms", "mas1601", "MAS1601", "natural logarithm", "Steps", "steps"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

20/06/2012:

\n \t\t

Added tags.

\n \t\t

Extensively changed the variables in order to simplify the question - quadratics generated which only have complex roots to stop the quadratic being zero in any range.

\n \t\t

Added Steps prompt about losing a mark. Also added to Steps re using abs.

\n \t\t

Added required string abs for answer entry.

\n \t\t

Improved spacing.

\n \t\t

4/07/2012:

\n \t\t

In the steps it is explained that the absolute value of the natural logarithm is inputted as ln(abs(x)) however unless steps are revealed it is unclear how to write |x|. Should this information be included in the question somehow?

\n \t\t

6/08/2012:

\n \t\t

Information on using ln(abs(x)) included in the statement.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle I=\\int \\frac{2 a x + b} {a x ^ 2 + b x + c}\\;dx$ by substitution or otherwise.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n

This exercise is best solved by using substitution.

\n

Note that the numerator $\\simplify[std]{{2 * a} * x + {b}}$ of \\[\\simplify[std]{({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c})}\\] is the derivative of the denominator $\\simplify[std]{{a} * x ^ 2 + {b} * x + {c}}$

\n

So if you use as your substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$ you then have $\\simplify[std]{ du = ({2 * a} * x + {b}) * dx}$

\n

Hence we can replace $\\simplify[std]{ ({2 * a} * x + {b}) * dx}$ by $du$

\n

Hence the integral becomes:

\n

\\[\\begin{eqnarray*} I&=&\\int\\;\\frac{du}{u}\\\\ &=&\\ln(|u|)+C\\\\ &=& \\simplify[std]{ln(abs({a} * (x ^ 2) + ({b} * x) + {c}))+C} \\end{eqnarray*}\\]

\n

A Useful Result
This example can be generalised.

\n

Suppose \\[I = \\int\\; \\frac{f'(x)}{f(x)}\\;dx\\]

\n

The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int \\frac{du}{u} = \\ln(|u|)+ C = \\ln(|f(x)|)+C\\]

\n "}, {"name": "Integration of fraction with power in denominator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "r": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..5)", "description": "", "name": "r"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "3", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "m*a", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "m*d+r", "description": "", "name": "c"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "d"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..4)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "m", "n", "r"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "({-m}/{n-2})*x-{m*d*(n-1)+r*(n-2)}/{(n-2)*(n-1)*a}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

$I=\\displaystyle \\int \\simplify[std]{({b}*x+{c})/(({a}*x+{d})^{n})} dx$

\n

You are given that \\[I=\\simplify[std]{g(x)*({a}x+{d})^{1-n}}+C\\] for a polynomial $g(x)$.

\n

You have to find $g(x)$.

\n

$g(x)=\\;$[[0]]

\n

Remember to input all numbers as integers or fractions.

\n ", "showCorrectAnswer": true, "marks": 0}], "statement": "\n

Find the following indefinite integral.

\n

Input all numbers as integers or fractions, not as decimals.

\n

 

\n ", "tags": ["Calculus", "calculus", "checked2015", "indefinite integral", "indefinite integration", "integration", "integration by substitution", "integration of a rational polynomial", "MAS1601", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

3/7/2012:

\n \t\t

Added tags

\n \t\t

20/06/2012:

\n \t\t

Added tags.

\n \t\t

Improved spacing and display.

\n \t\t

Got rid of instruction about including constant of integration as not needed.

\n \t\t

Checked calculation.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

$\\displaystyle \\int \\frac{bx+c}{(ax+d)^n} dx=g(x)(ax+d)^{1-n}+C$  for a polynomial $g(x)$. Find $g(x)$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n

Let $y = \\simplify[std]{{a}*x+{d}}$.

\n

Then $x=\\frac{1}{\\var{a}}\\simplify[std]{(y-{d})}$ and so we have the numerator $\\simplify[std]{{b}*x+{c}}$ becomes in terms of $y$:

\n

$\\simplify[std]{{b}*x+{c} = {b}*1/{a}*(y-{d})+{c}= {m}y+{r}}$ and so

\n

\\[\\simplify[std]{({b}*x+{c})/(({a}*x+{d})^{n})} = \\simplify[std]{({m}*y+{r})/(y^{n})={m}/y^{n-1}+{r}/y^{n}}\\]

\n

Now,
\\[\\int \\simplify[std]{({b}x+{c})/({a}*x+{d})^{n}} dx = \\int \\left(\\simplify[std]{{m}/y^{n-1}+{r}/y^{n}} \\right)\\frac{dx}{dy} dy \\]

\n

Since $\\displaystyle x = \\simplify[std]{(y-{d})/{a}}$ then $\\displaystyle \\frac{dx}{dy} = \\frac{1}{\\var{a}}$.

\n

We can now calculate the desired integral:

\n

\\[ \\begin{eqnarray*} \\int \\left(\\simplify[std]{{m}/y^{n-1}+{r}/y^{n}}\\right) \\frac{dx}{dy} dy &=&\\frac{1}{\\var{a}}\\left(\\int \\simplify[std]{{m}/y^{n-1}}\\;dy+\\int \\simplify[std]{{r}/y^{n}}\\;dy \\right)\\\\ &=&\\frac{1}{\\var{a}}\\left(\\simplify[std]{{-m}/({n-2}*y^{n-2})+ {-r}/({n-1}*y^{n-1})}\\right) + C \\\\ &=& \\simplify[std]{(-{m})/({a*(n-2)}*({a}*x+{d})^{n-2})+(-{r})/({a*(n-1)}*({a}*x+{d})^{n-1}) + C}\\\\ &=&\\simplify[std]{1/({a}x+{d})^{n-1}*(({-m}/{a*(n-2)})*({a}x+{d})-{r}/({a*(n-1)}))}\\\\ &=&\\simplify[std]{1/({a}x+{d})^{n-1}*(({-m}/{(n-2)})*x+{-m*d*(n-1)-r*(n-2)}/{(n-2)*(n-1)*a})} \\end{eqnarray*} \\]
Hence \\[g(x)=\\simplify[std]{({-m}/{(n-2)})*x+{-m*d*(n-1)-r*(n-2)}/{(n-2)*(n-1)*a}}\\]

\n "}, {"name": "Integration: Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(4..9)", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "s1", "b", "m"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input all numbers as integers or fractions and not as decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

\\[I=\\simplify[std]{Int( x*({a} * x ^ 2 + {b})^{m},x)}\\]

\n

$I=\\;$[[0]]

\n

Input numbers in your answer as integers or fractions and not as decimals.

\n

Click on Show steps to get further help. You will lose 1 mark if you do so.

", "steps": [{"type": "information", "prompt": "

Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + {b}}$

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "

Find the following integral.

\n

Input the constant of integration as $C$.

", "tags": ["Calculus", "calculus", "checked2015", "indefinite integration", "integration", "integration by substitution", "MAS1601", "mas1601", "Steps", "steps", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

2/08/2012:

\n

Added tags.

\n

Added description.

\n

Checked calculation. OK.

\n

Added information about Show steps in prompt content area. 

\n

Added decimal point as forbidden string and included message in prompt about not entering decimals.

\n

Got rid of a redundant ruleset.

\n

 

\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int x(a x ^ 2 + b)^{m}\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \n

This exercise is best solved by using substitution.
Note that if we let $u=\\simplify[std]{{a} * (x ^ 2) + {b}}$ then $du=\\simplify[std]{({2*a} * x)*dx }$
Hence we can replace $xdx$ by $\\frac{1}{\\var{2*a}}du$.

\n \n \n \n

Hence the integral becomes:

\n \n \n \n

\\[\\begin{eqnarray*} I&=&\\simplify[std]{Int((1/{2*a})u^{m},u)}\\\\\n \n &=&\\simplify[std]{(1/{2*a})u^{m+1}/{m+1}+C}\\\\\n \n &=& \\simplify[std]{({a} * (x ^ 2) + {b})^{m+1}/{2*a*(m+1)}+C}\n \n \\end{eqnarray*}\\]

\n \n \n \n

A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; f'(x)g(f(x))\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int g(u)\\;du \\]
And if we can find this simpler integral in terms of $u$ we can replace $u$ by $f(x)$ and get the result in terms of $x$.

\n \n "}, {"name": "Integration: Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}], "variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "max(-10,f+1)+random(1..5)", "description": "", "name": "c1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "2*a+b1", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a*b1^2+c1", "description": "", "name": "c"}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "-a*(1+b1)^2", "description": "", "name": "f"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "c", "b", "f", "s1", "b1", "c1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "ln(abs({a}*x^2+{b}*x+{c}))+C", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

\\[I=\\simplify[std]{Int(({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c}),x)}\\]

\n

$I=\\;$[[0]]

\n

Input the constant of integration as $C$.

\n

Input all numbers as integers or fractions not as decimals.

\n

Click on Show steps if you need help. You will lose 1 mark if you do so.

\n ", "steps": [{"type": "information", "prompt": "

Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n

Find the following integral.

\n

Input the constant of integration as $C$.

\n

Input all numbers as integers or fractions.

\n

 

\n ", "tags": ["Calculus", "calculus", "checked2015", "indefinite integration", "integration", "integration by substitution", "MAS1601", "mas1601", "Steps", "steps", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

2/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps in prompt content area. 

\n \t\t

Added decimal point as forbidden string and included message in prompt about not entering decimals.

\n \t\t

Got rid of a redundant ruleset. !noLeadingMinus added to std ruleset.

\n \t\t

Note that the choice of variables means that the argument of the log answer is always $\\gt 0$ so no need to use abs.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int \\frac{2ax + b}{ax ^ 2 + bx + c}\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

This exercise is best solved by using substitution.

\n

Note that the numerator $\\simplify[std]{{2 * a} * x + {b}}$ of \\[\\simplify[std]{({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c})}\\] is the derivative of the denominator $\\simplify[std]{{a} * x ^ 2 + {b} * x + {c}}$

\n

So if you use as your substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$ you then have $\\simplify[std]{ du = ({2 * a} * x + {b}) * dx}$

\n

Hence we can replace $\\simplify[std]{ ({2 * a} * x + {b}) * dx}$ by $du$

\n

Hence the integral becomes:

\n

\\[\\begin{eqnarray*} I&=&\\int\\;\\frac{du}{u}\\\\ &=&\\ln(|u|)+C\\\\ &=& \\simplify[std]{ln(abs({a} * (x ^ 2) + ({b} * x) + {c}))+C} \\end{eqnarray*}\\]

\n

A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; \\frac{f'(x)}{f(x)}\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int \\frac{du}{u} = \\ln(|u|)+ C = \\ln(|f(x)|)+C\\]

"}], "pickingStrategy": "all-ordered", "pickQuestions": 0, "name": ""}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}], "extensions": [], "custom_part_types": [], "resources": []}