// Numbas version: finer_feedback_settings {"feedback": {"showanswerstate": true, "intro": "", "allowrevealanswer": true, "showtotalmark": true, "feedbackmessages": [], "advicethreshold": 0, "showactualmark": true, "enterreviewmodeimmediately": true, "showexpectedanswerswhen": "inreview", "showpartfeedbackmessageswhen": "always", "showactualmarkwhen": "always", "showtotalmarkwhen": "always", "showanswerstatewhen": "always", "showadvicewhen": "never"}, "metadata": {"description": "

Quiz to assess matrix addition, subtraction, multiplication and multiplication by scalar, determinants and inverses, solving a system of simultaneous equations.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "showQuestionGroupNames": false, "showstudentname": true, "question_groups": [{"pickQuestions": 1, "name": "Group", "pickingStrategy": "all-ordered", "questions": [{"name": "Matrix addition and subtraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Addition and subtraction of matrices; multiplication by scalar.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

The matrices $A$, $B$ and $C$ are defined as:

\n

\\[A=\\var{A}\\qquad B=\\var{B}\\qquad C=\\var{C}\\]

", "advice": "", "rulesets": {}, "variables": {"B": {"name": "B", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)])", "description": "", "templateType": "anything"}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(2..5 except p)", "description": "", "templateType": "anything"}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)])", "description": "", "templateType": "anything"}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)])", "description": "", "templateType": "anything"}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "B", "C", "p", "q"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $A+B$ ?

", "correctAnswer": "A+B", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $B-C$ ?

", "correctAnswer": "B-C", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $\\var{p}A+\\var{q}C$ ?

", "correctAnswer": "p*A+q*C", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is $\\var{p+1}C-\\var{q+1}B$ ?

", "correctAnswer": "(p+1)*C-(q+1)*B", "correctAnswerFractions": false, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Matrix multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Multiplication of matrices.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

The matrices $A$, $B$, $C$ and $D$ are defined as:

\n

\\[A=\\var{A}\\qquad B=\\var{B}\\qquad C=\\var{C}\\qquad D=\\var{D}\\]

\n

Multiply the matrices, as stated below. You should adjust the number of rows and columns to obtain the correct shape of the answer matrix.

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"B": {"name": "B", "group": "Ungrouped variables", "definition": "matrix([random(-5..5)],[random(-5..5)])", "description": "", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)])", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5)],[random(-5..5),random(-5..5)])", "description": "", "templateType": "anything", "can_override": false}, "D": {"name": "D", "group": "Ungrouped variables", "definition": "matrix([random(-5..5),random(-5..5),random(-5..5)])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "B", "C", "D"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $AB$.

", "correctAnswer": "A*B", "correctAnswerFractions": false, "numRows": "1", "numColumns": "1", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "5", "minRows": 1, "maxRows": "5"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $CB$.

", "correctAnswer": "C*B", "correctAnswerFractions": false, "numRows": "1", "numColumns": "1", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "5", "minRows": 1, "maxRows": "5"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $BD$.

", "correctAnswer": "B*D", "correctAnswerFractions": false, "numRows": "1", "numColumns": "1", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "5", "minRows": 1, "maxRows": "5"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate $DC$.

", "correctAnswer": "D*C", "correctAnswerFractions": false, "numRows": "1", "numColumns": "1", "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": "5", "minRows": 1, "maxRows": "5"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question"}, {"name": "Determinant and inverse of 2x2 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "preamble": {"js": "", "css": ""}, "variable_groups": [], "variablesTest": {"condition": "det<>0", "maxRuns": 100}, "functions": {}, "tags": [], "advice": "", "variables": {"a": {"description": "", "definition": "random(-5..5)", "name": "a", "group": "Ungrouped variables", "templateType": "anything"}, "det": {"description": "", "definition": "a*d-b*c", "name": "det", "group": "Ungrouped variables", "templateType": "anything"}, "c": {"description": "", "definition": "random(-5..5)", "name": "c", "group": "Ungrouped variables", "templateType": "anything"}, "M": {"description": "", "definition": "matrix([a,b],[c,d])", "name": "M", "group": "Ungrouped variables", "templateType": "anything"}, "b": {"description": "", "definition": "random(-5..5)", "name": "b", "group": "Ungrouped variables", "templateType": "anything"}, "d": {"description": "", "definition": "random(-5..5)", "name": "d", "group": "Ungrouped variables", "templateType": "anything"}}, "parts": [{"vsetrange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "variableReplacements": [], "marks": 1, "checkvariablenames": false, "answer": "{det}", "type": "jme", "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showpreview": false, "prompt": "

What is determinant of $A$?

", "showFeedbackIcon": true, "expectedvariablenames": [], "checkingtype": "absdiff"}, {"scripts": {}, "showCorrectAnswer": true, "tolerance": 0, "allowFractions": false, "correctAnswer": "matrix([d,-b],[-c,a])", "variableReplacements": [], "marks": "4", "numColumns": "2", "allowResize": false, "type": "matrix", "variableReplacementStrategy": "originalfirst", "numRows": "2", "markPerCell": true, "correctAnswerFractions": false, "prompt": "

Write down the adjoint of $A$. (Swap top-left and bottom-right entries; change signs of top-right and bottom-left entries.)

", "showFeedbackIcon": true}, {"scripts": {}, "showCorrectAnswer": true, "tolerance": 0, "allowFractions": true, "correctAnswer": "matrix([d/det,-b/det],[-c/det,a/det])", "variableReplacements": [], "marks": "4", "numColumns": "2", "allowResize": false, "type": "matrix", "variableReplacementStrategy": "originalfirst", "numRows": "2", "markPerCell": true, "correctAnswerFractions": true, "prompt": "

Hence write down the inverse of $A$. Write the entries as fractions or decimals.

", "showFeedbackIcon": true}], "ungrouped_variables": ["M", "a", "b", "c", "d", "det"], "metadata": {"description": "", "licence": "None specified"}, "statement": "

The matrix $A$ is:

\n

\\[A=\\var{M}\\]

", "rulesets": {}, "type": "question"}, {"name": "Determinant and inverse of 3x3 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "variables": {"m11": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m11", "description": ""}, "a22": {"group": "Minors", "templateType": "anything", "definition": "m11*m33-m13*m31", "name": "a22", "description": ""}, "a23": {"group": "Minors", "templateType": "anything", "definition": "m11*m32-m12*m31", "name": "a23", "description": ""}, "m12": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m12", "description": ""}, "m13": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m13", "description": ""}, "m32": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m32", "description": ""}, "M": {"group": "Ungrouped variables", "templateType": "anything", "definition": "matrix([m11,m12,m13],[m21,m22,m23],[m31,m32,m33])", "name": "M", "description": ""}, "a32": {"group": "Minors", "templateType": "anything", "definition": "m11*m23-m13*m21", "name": "a32", "description": ""}, "m23": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m23", "description": ""}, "a21": {"group": "Minors", "templateType": "anything", "definition": "m12*m33-m13*m32", "name": "a21", "description": ""}, "a13": {"group": "Minors", "templateType": "anything", "definition": "m21*m32-m22*m31", "name": "a13", "description": ""}, "m22": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m22", "description": ""}, "a31": {"group": "Minors", "templateType": "anything", "definition": "m12*m23-m13*m22", "name": "a31", "description": ""}, "a12": {"group": "Minors", "templateType": "anything", "definition": "m21*m33-m23*m31", "name": "a12", "description": ""}, "det": {"group": "Ungrouped variables", "templateType": "anything", "definition": "det(M)", "name": "det", "description": ""}, "m33": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m33", "description": ""}, "a33": {"group": "Minors", "templateType": "anything", "definition": "m11*m22-m12*m21", "name": "a33", "description": ""}, "m31": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m31", "description": ""}, "m21": {"group": "Matrix entries", "templateType": "anything", "definition": "random(-5..5)", "name": "m21", "description": ""}, "a11": {"group": "Minors", "templateType": "anything", "definition": "m22*m33-m23*m32", "name": "a11", "description": ""}}, "functions": {}, "tags": [], "parts": [{"showFeedbackIcon": true, "vsetrange": [0, 1], "scripts": {}, "vsetrangepoints": 5, "expectedvariablenames": [], "prompt": "

What is the determinant of $A$?

", "type": "jme", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "variableReplacements": [], "marks": "4", "checkvariablenames": false, "checkingtype": "absdiff", "showpreview": false, "answer": "{det}"}, {"showFeedbackIcon": true, "scripts": {}, "numRows": "3", "correctAnswerFractions": false, "prompt": "

Write down the minor matrix of $A$.

", "type": "matrix", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "allowResize": false, "numColumns": "3", "marks": "9", "correctAnswer": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "tolerance": 0, "markPerCell": true, "variableReplacements": [], "allowFractions": false}, {"showFeedbackIcon": true, "scripts": {}, "numRows": "3", "correctAnswerFractions": false, "prompt": "

Write down the cofactor matrix of $A$. (Certain entries change signs according to pattern below.)

\n

\\[\\begin{array}[ccc]++&-&+\\\\-&+&-\\\\+&-&+\\end{array}\\]

\n

", "type": "matrix", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "allowResize": false, "numColumns": "3", "marks": "9", "correctAnswer": "matrix([a11,-a12,a13],[-a21,a22,-a23],[a31,-a32,a33])", "tolerance": 0, "markPerCell": true, "variableReplacements": [], "allowFractions": false}, {"showFeedbackIcon": true, "scripts": {}, "numRows": "3", "correctAnswerFractions": false, "prompt": "

Write down the adjoint of $A$. (Transpose of the cofactor matrix.)

", "type": "matrix", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "allowResize": false, "numColumns": "3", "marks": "9", "correctAnswer": "matrix([a11,-a21,a31],[-a12,a22,-a32],[a13,-a23,a33])", "tolerance": 0, "markPerCell": true, "variableReplacements": [], "allowFractions": false}, {"marks": 0, "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showFeedbackIcon": true, "scripts": {}, "correctAnswerStyle": "plain", "minValue": "{det}", "marks": "1", "type": "numberentry", "showCorrectAnswer": true, "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "maxValue": "{det}", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "allowFractions": false}, {"showFeedbackIcon": true, "scripts": {}, "numRows": "3", "correctAnswerFractions": true, "type": "matrix", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "allowResize": false, "numColumns": "3", "marks": "9", "correctAnswer": "matrix([a11,-a21,a31],[-a12,a22,-a32],[a13,-a23,a33])", "tolerance": 0, "markPerCell": true, "variableReplacements": [], "allowFractions": false}], "prompt": "

Hence write down the inverse of $A$.

\n\n\n\n\n\n\n\n\n\n\n
1[[1]]
[[0]]
", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "showCorrectAnswer": true}], "variable_groups": [{"variables": ["m11", "m12", "m13", "m21", "m22", "m23", "m31", "m32", "m33"], "name": "Matrix entries"}, {"variables": ["a11", "a12", "a13", "a21", "a22", "a23", "a31", "a32", "a33"], "name": "Minors"}], "rulesets": {}, "preamble": {"js": "", "css": ""}, "statement": "

The matrix $A$ is:

\n

\\[A=\\var{M}\\]

", "advice": "", "ungrouped_variables": ["M", "det"], "metadata": {"licence": "None specified", "description": "

Determinant, minors, cofactors, adjoint and inverse.

"}, "variablesTest": {"maxRuns": 100, "condition": "det(M)<>0"}, "type": "question"}, {"name": "Solve system of three simultaneous equations with matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "contributors": [{"name": "Martin Jones", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/145/"}], "tags": [], "metadata": {"description": "

Use matrices to solve a  system of three simultaneous equations

", "licence": "None specified"}, "statement": "

You are going to solve the following system of simultaneous equations:

\n

\\[\\begin{eqnarray}\\simplify{{m11}*x+{m12}*y+{m13}*z}&=&\\var{r1}\\\\
\\simplify{{m21}*x+{m22}*y+{m23}*z}&=&\\var{r2}\\\\
\\simplify{{m31}*x+{m32}*y+{m33}*z}&=&\\var{r3}\\\\\\end{eqnarray}\\]

", "advice": "", "rulesets": {}, "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"m11": {"name": "m11", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a32": {"name": "a32", "group": "Minors", "definition": "m11*m23-m13*m21", "description": "", "templateType": "anything", "can_override": false}, "m13": {"name": "m13", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "M": {"name": "M", "group": "Ungrouped variables", "definition": "matrix([m11,m12,m13],[m21,m22,m23],[m31,m32,m33])", "description": "", "templateType": "anything", "can_override": false}, "r2": {"name": "r2", "group": "Answer", "definition": "m21*x+m22*y+m23*z", "description": "", "templateType": "anything", "can_override": false}, "a23": {"name": "a23", "group": "Minors", "definition": "m11*m32-m12*m31", "description": "", "templateType": "anything", "can_override": false}, "m31": {"name": "m31", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a11": {"name": "a11", "group": "Minors", "definition": "m22*m33-m23*m32", "description": "", "templateType": "anything", "can_override": false}, "a31": {"name": "a31", "group": "Minors", "definition": "m12*m23-m13*m22", "description": "", "templateType": "anything", "can_override": false}, "a33": {"name": "a33", "group": "Minors", "definition": "m11*m22-m12*m21", "description": "", "templateType": "anything", "can_override": false}, "r3": {"name": "r3", "group": "Answer", "definition": "m31*x+m32*y+m33*z", "description": "", "templateType": "anything", "can_override": false}, "m21": {"name": "m21", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a13": {"name": "a13", "group": "Minors", "definition": "m21*m32-m22*m31", "description": "", "templateType": "anything", "can_override": false}, "a22": {"name": "a22", "group": "Minors", "definition": "m11*m33-m13*m31", "description": "", "templateType": "anything", "can_override": false}, "m12": {"name": "m12", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Solution", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "m23": {"name": "m23", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a21": {"name": "a21", "group": "Minors", "definition": "m12*m33-m13*m32", "description": "", "templateType": "anything", "can_override": false}, "m22": {"name": "m22", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "a12": {"name": "a12", "group": "Minors", "definition": "m21*m33-m23*m31", "description": "", "templateType": "anything", "can_override": false}, "det": {"name": "det", "group": "Ungrouped variables", "definition": "det(M)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Solution", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Solution", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "r1": {"name": "r1", "group": "Answer", "definition": "m11*x+m12*y+m13*z", "description": "", "templateType": "anything", "can_override": false}, "m33": {"name": "m33", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "m32": {"name": "m32", "group": "Matrix entries", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "det(M)<>0", "maxRuns": 100}, "ungrouped_variables": ["M", "det"], "variable_groups": [{"name": "Matrix entries", "variables": ["m11", "m12", "m13", "m21", "m22", "m23", "m31", "m32", "m33"]}, {"name": "Minors", "variables": ["a11", "a12", "a13", "a21", "a22", "a23", "a31", "a32", "a33"]}, {"name": "Solution", "variables": ["x", "y", "z"]}, {"name": "Answer", "variables": ["r1", "r2", "r3"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The system of equations can be written in the form

\n

\\[M\\Bigg(\\begin{matrix}x\\\\y\\\\z\\end{matrix}\\Bigg)=\\Bigg(\\begin{matrix}\\var{r1}\\\\\\var{r2}\\\\\\var{r3}\\end{matrix}\\Bigg)\\]

\n

Write down the matrix $M$.

", "correctAnswer": "M", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "jme", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

What is the determinant of $M$?

", "answer": "{det}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write down the cofactor matrix of $M$.

", "correctAnswer": "matrix([a11,-a12,a13],[-a21,a22,-a23],[a31,-a32,a33])", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the inverse of $M$.

\n\n\n\n\n\n\n\n\n\n\n
1[[1]]
[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{det}", "maxValue": "{det}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "matrix", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([a11,-a21,a31],[-a12,a22,-a32],[a13,-a23,a33])", "correctAnswerFractions": true, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By multiplying on the left by $M^{-1}$ we obtain

\n

\\[\\Bigg(\\begin{matrix}x\\\\y\\\\z\\end{matrix}\\Bigg)=M^{-1}\\Bigg(\\begin{matrix}\\var{r1}\\\\\\var{r2}\\\\\\var{r3}\\end{matrix}\\Bigg)\\]

\n

Calculate the values of $x$, $y$ and $z$.

\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x}", "maxValue": "{x}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{y}", "maxValue": "{y}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{z}", "maxValue": "{z}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Finally it is a good idea to check your answers.

\n\n

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{r1}", "maxValue": "{r1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{r2}", "maxValue": "{r2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{r3}", "maxValue": "{r3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always"}]}], "percentPass": "80", "navigation": {"showfrontpage": false, "showresultspage": "oncompletion", "preventleave": true, "reverse": true, "allowregen": true, "onleave": {"action": "none", "message": ""}, "browse": true}, "timing": {"timedwarning": {"action": "none", "message": ""}, "timeout": {"action": "none", "message": ""}, "allowPause": true}, "name": "Blathnaid's copy of Matrices arithmetic", "duration": 0, "type": "exam", "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}], "extensions": [], "custom_part_types": [], "resources": []}