// Numbas version: exam_results_page_options {"duration": 0, "question_groups": [{"pickQuestions": 1, "pickingStrategy": "all-ordered", "name": "Group", "questions": [{"name": "Rearranging equations by multiplying or dividing: One step", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": [], "tags": ["algebra", "balancing equations", "ephlth", "linear equations", "Linear equations", "one step equations", "rearranging equations", "REBEL", "rebel", "rebelmaths", "Solving equations", "solving equations"], "preamble": {"css": "", "js": ""}, "advice": "

Here is a video on Transposition  https://www.youtube.com/watch?v=0oq4arfe-SM

", "rulesets": {}, "parts": [{"stepsPenalty": "1", "prompt": "

Given $ax=b$, we can rearrange the equation to that find $x=$ [[0]].

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $ax=b$, we divide both sides by $a$ to get $x$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $ax$ $=$ $b$ $\\displaystyle{\\frac{ax}{a}}$ $=$ $\\displaystyle{\\frac{b}{a}}$ $x$ $=$ $\\displaystyle{\\frac{b}{a}}$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["b", "a"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "b/a", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Given $cy=d$,  $y=$ [[0]].

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $cy=d$, we divide both sides by $c$ to get $y$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $cy$ $=$ $d$ $\\displaystyle{\\frac{cy}{c}}$ $=$ $\\displaystyle{\\frac{d}{c}}$ $y$ $=$ $\\displaystyle{\\frac{d}{c}}$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["d", "c"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "d/c", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Rearrange $\\displaystyle{\\frac{z}{f}=g}$ to determine the value of $z$.

\n

$z=$ [[0]]

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $\\displaystyle{\\frac{z}{f}}=g$, we multiply both sides by $f$ to get $z$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $\\displaystyle{\\frac{z}{f}}$ $=$ $g$ $\\displaystyle{\\frac{z}{f}}\\times f$ $=$ $g\\times f$ $z$ $=$ $fg$
\n

\n

We input our answer as f*g or g*f.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["f", "g"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "f*g", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Solve $\\displaystyle{h=-\\frac{a}{j}}$ for $a$.

\n

$a=$ [[0]]

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $\\displaystyle{h=-\\frac{a}{j}}$, we multiply both sides by $-j$ to get $a$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $h$ $=$ $\\displaystyle{-\\frac{a}{j}}$ $h\\times(-\\var{j})$ $=$ $\\displaystyle{-\\frac{a}{j}\\times(-j)}$ $-hj$ $=$ $a$ $a$ $=$ $-hj$
\n

\n

We input our answer as -h*j or -j*h.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["j", "h"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "-j*h", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Rearrange $\\displaystyle{a=\\frac{b}{c}}$ to determine the value of $c$.

\n

$c=$ [[0]]

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $\\displaystyle{a=\\frac{b}{c}}$, we need to do two things to get $c$ by itself:

\n
\n
1. multiply both sides by $c$ to get $c$ off the bottom of the fraction, then
2. \n
3. divide both sides by $a$ to get $c$ by itself.
4. \n
\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $a$ $=$ $\\displaystyle{\\frac{b}{c}}$ $a\\times c$ $=$ $\\displaystyle{\\frac{b}{c}}\\times c$ (see step 1 above) $ac$ $=$ $b$ $\\displaystyle{\\frac{ac}{a}}$ $=$ $\\displaystyle{\\frac{b}{a}}$ (see step 2 above) $c$ $=$ $\\displaystyle{\\frac{b}{a}}$
\n

\n

Notice, it looks like we have just swapped $a$ and $c$ diagonally over the equals sign.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["b", "a"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "b/a", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Rearrange $\\displaystyle{s=\\frac{d}{t}}$ to determine the value of $t$.

\n

$t=$ [[0]]

\n

\n

Note: Use / to signify division and * to signify multiplication.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

Given $\\displaystyle{s=\\frac{d}{t}}$, we need to do two things to get $t$ by itself:

\n
\n
1. multiply both sides by $t$ to get $t$ off the bottom of the fraction, then
2. \n
3. divide both sides by $s$ to get $t$ by itself.
4. \n
\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $s$ $=$ $\\displaystyle{\\frac{d}{t}}$ $s\\times t$ $=$ $\\displaystyle{\\frac{d}{t}}\\times t$ (see step 1 above) $st$ $=$ $d$ $\\displaystyle{\\frac{st}{s}}$ $=$ $\\displaystyle{\\frac{d}{s}}$ (see step 2 above) $t$ $=$ $\\displaystyle{\\frac{d}{s}}$
\n

\n

Notice, it looks like we have just swapped $s$ and $t$ diagonally over the equals sign.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["d", "s"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "d/s", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": "100", "condition": ""}, "variables": {}, "metadata": {"description": "

Rearranging equations by multiplying or dividing: One step

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Transposition Q1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["a", "c", "b", "atimesc"], "tags": ["rebel", "REBEL", "rebelmaths", "transposition"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

Transpose the formula $y=x+\\var{a}$ to make $x$ the subject

\n

$x=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "y-{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Write $x$ in terms of $y$ if

\n

$y =\\dfrac{x}{\\var{b}}$.

\n

$x=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{b}y", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Make $c$ the subject of the formula $y=\\var{c}x+c$.

\n

$c=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "y-{c}x", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Make $x$ the subject of the formula $y=\\var{a}x+\\var{b}$.

\n

$x=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(y-{b})/{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find $x$ in terms of $y$ if

\n

$\\var{c}y = \\var{c}x+\\var{a}$

\n

$x=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({c}y-{a})/{c}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find $y$ in terms of $x$ if

\n

$\\var{a}y=\\var{c}x+\\var{a}$

\n

$y=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({c}x+{a})/{a}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Note: to input the answer \"$x=y+2$\" the \"$x=$\" is already given and you just need to input \"$y+2$\".

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..9 except[a,b])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..9 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "atimesc": {"definition": "{a}*{c}", "templateType": "anything", "group": "Ungrouped variables", "name": "atimesc", "description": ""}}, "metadata": {"description": "

Transposition

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Transposition of Formulae", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": ["m", "c", "a"], "tags": ["rebel", "Rebel", "REBEL", "rebelmaths", "transpose"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

Make x the subject of

\n

$y = \\var{m} x + \\var{c}$

\n

$x =$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(y-{c})/{m}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Make x the subject of

\n

$\\var{a}y = \\var{m} x + \\var{c}$

\n

$x =$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({a}y-{c})/{m}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Make R the subject of

\n

$I=\\frac{V}{R}$

\n

$R =$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "V/verb:I", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Make P the subject of

\n

$A = P(1+r)^n$

\n

$P=$[[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "A/(1+r)^n ", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "m": {"definition": "random(1..20)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}}, "metadata": {"description": "

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}, {"name": "Transposing formula", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "David Goulding", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2365/"}], "preamble": {"js": "", "css": ""}, "advice": "", "tags": [], "parts": [{"unitTests": [], "showFeedbackIcon": true, "useCustomName": false, "showCorrectAnswer": true, "sortAnswers": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "gaps": [{"checkingType": "absdiff", "useCustomName": false, "variableReplacements": [], "vsetRangePoints": 5, "answerSimplification": "std", "variableReplacementStrategy": "originalfirst", "customName": "", "vsetRange": [0, 1], "answer": "({c} - {b}x)/({a} - {d}x)", "marks": "5", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showFeedbackIcon": true, "checkVariableNames": false, "failureRate": 1, "checkingAccuracy": 0.001, "valuegenerators": [{"name": "x", "value": ""}], "showPreview": true, "showCorrectAnswer": true, "scripts": {}, "type": "jme", "customMarkingAlgorithm": ""}], "prompt": "

$\\simplify[std]{{a}y + {b}x = {c} + {d}xy}\\;$

\n

$y =$ [[0]]

\n

You can click on \"Show steps\" for more information, but you will lose one mark if you do so.

", "customName": "", "steps": [{"unitTests": [], "showFeedbackIcon": true, "useCustomName": false, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "prompt": "

To re-arrange $ay + bx = c + dxy$ we should first collect all of the terms involving $y$ to the one side

\n

$ay - dxy = c - bx$

\n

we should then factorize out $y$ to find

\n

$y(a-dx) = c - bx$

\n

and then divide by $a-dx$ to get $y$ on its own

\n

$y = \\frac{c - bx}{a - dx}$

", "customName": "", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "type": "information", "customMarkingAlgorithm": ""}], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "type": "gapfill", "customMarkingAlgorithm": "", "stepsPenalty": 1}], "metadata": {"description": "

Another transposition question.

\n

rebalmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Rearrange the following equation to make $y$ the subject.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": ["a", "c", "b", "d"], "rulesets": {"std": ["all", "!noLeadingMinus", "!collectNumbers"]}, "variables": {"a": {"group": "Ungrouped variables", "name": "a", "templateType": "anything", "definition": "random(-10..10 except 0)", "description": ""}, "b": {"group": "Ungrouped variables", "name": "b", "templateType": "anything", "definition": "random(-10..10)", "description": ""}, "c": {"group": "Ungrouped variables", "name": "c", "templateType": "anything", "definition": "random(-10..10)", "description": ""}, "d": {"group": "Ungrouped variables", "name": "d", "templateType": "anything", "definition": "random(-10..10)", "description": ""}}, "functions": {}, "variable_groups": []}, {"name": "Transposition Practical examples", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "functions": {}, "ungrouped_variables": [], "tags": ["rebel", "REBEL", "rebelmaths", "transposition"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

The formula $P=\\frac{F}{A}$ is used in mechanics where $P=$Pressure, $F=$Force and $A=$Area.

\n

Rearrange the forumla to make $F$ the subject.

\n

Note if inputting $xy$ for an  answer you need to input $x*y$.

\n

$F=$[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "P*A", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

The formula $v=u+at$ is used in mechanics where $v=$final velocity, $u=$initial velocity and $t=$time.

\n

Rearrange the forumla to make $u$ the subject.

\n

$u=$[[0]]

\n

Rearrange the forumla to make $a$ the subject.

\n

$a=$[[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "v-a*t", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(v-u)/t", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {}, "metadata": {"description": "

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}]}]}], "navigation": {"showfrontpage": true, "browse": true, "showresultspage": "oncompletion", "reverse": true, "onleave": {"message": "", "action": "none"}, "preventleave": true, "allowregen": true}, "showQuestionGroupNames": false, "feedback": {"advicethreshold": 0, "showanswerstate": true, "showactualmark": true, "intro": "", "showtotalmark": true, "allowrevealanswer": true, "feedbackmessages": []}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Practice of basic transpositions. Doesn't include roots

"}, "timing": {"timedwarning": {"message": "", "action": "none"}, "timeout": {"message": "", "action": "none"}, "allowPause": true}, "showstudentname": true, "percentPass": 0, "name": "MATH6051 Transpositions", "type": "exam", "contributors": [{"name": "Deirdre Casey", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/681/"}, {"name": "David Goulding", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2365/"}], "extensions": [], "custom_part_types": [], "resources": []}