Recall the formula for the sum of the first n terms of an arithmetic progression is Sn=n2(2a+(n−1)d).
The sum of the first 3 terms of an arithmetic progression is 32
32(2a+2d)=32
3a+3d=32 equation (i)
The sum of the first 15 terms of an arithmetic progression is 71
152(2a+14d)=71
15a+105d=71 equation (ii)
We can eliminate the a term.
45a+45d=480 equation (i) * 15
45a+315d=213 equation (ii) * 3
Subtracting gives
−270d=267
d=267−270
d=−8990
Inserting this value in for d in equation (i) gives
3a+3(−8990)=32
3a+(−8930)=32
3a=32−(−8930)
3a=32+8930
a=32+89303
a=11.6555555556