// Numbas version: finer_feedback_settings {"name": "Integration by parts - Ch 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["s3", "c", "b", "m"], "name": "Integration by parts - Ch 1", "tags": ["algebraic manipulation", "Calculus", "calculus", "indefinite integration", "integrals", "integration", "integration by parts", "steps", "Steps"], "advice": "

The formula for integrating by parts is

\n

\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

\n

We choose $u = x$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{({b}*x+{c})^{m}}$.

\n

So $\\displaystyle \\frac{du}{dx}$ = $1$ and $\\displaystyle v = \\simplify[std]{(1/{(m+1)*b})*({b}*x+{c})^{m+1}}$.

\n

Hence,
\\[ \\begin{eqnarray*} \\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*b})*Int (({b}*x+{c})^{m+1}, x)} \\\\ &=& \\simplify[std]{(x/{(m+1)*b})*({b}*x+{c})^{m+1} - (1/{(m+1)*(m+2)*b^2})*({b}*x+{c})^{m+2}+C} \\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+2)}x - ({b}x+{c}))+C}\\\\ &=&\\simplify[std]{({b}*x+{c})^{m+1}/{(m+1)*(m+2)*b^2}*({b*(m+1)}x - {c})+C} \\end{eqnarray*}\\]
The solution is: $\\simplify[std]{g(x)={b*(m+1)}*x-{c}}$.

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": "0", "prompt": "

$I=\\displaystyle \\int \\simplify[std]{x*({b}x+{c})^{m}} dx $

\n

Leave your answer in the form of $\\frac{(ax+b)^d}{e}*g(x) + C$ with your constant of integration as \"+ C\".

\n

$I=\\;$[[0]]

\n

\n

You can get help by clicking on show steps.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({b}x+{c})^{m+1}/{b^2*(m+1)*(m+2)}*({b*(m+1)}*x-{c})+C", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "steps": [{"prompt": "

The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "marks": 0, "scripts": {}, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "

Find the following indefinite integral.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "c": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "m": {"definition": "random(2..6)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

3/08/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Added description.

\n \t\t \t\t

Checked calculation. OK.

\n \t\t \t\t

Got rid of redundant instructions about inputting constant of integration.

\n \t\t \t\t

Got rid of instruction re not inputting decimals - no restriction needed, so no forbidden strings.

\n \t\t \t\t

Penalised use of steps, 1 mark. Added message to that effect.

\n \t\t \t\t

Improved Advice display.

\n \t\t \n \t\t", "description": "

Given that $\\displaystyle \\int x({ax+b)^{m}} dx=\\frac{1}{A}(ax+b)^{m+1}g(x)+C$ for a given integer $A$ and polynomial $g(x)$, find $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Katie Dexter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/553/"}]}]}], "contributors": [{"name": "Katie Dexter", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/553/"}]}