// Numbas version: finer_feedback_settings {"name": "Transpose rational formula", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Transpose rational formula", "tags": [], "metadata": {"description": "
Choice of 2 formulae. The first is a fraction of the form y=(r+x)(1-rx). The second is of the form y=sqrt[(1-x)/(1+x) ]. Rearrange to make x the subject.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Make \\(x\\) the subject of \\(\\displaystyle{y=\\var{formula[select]}}\\)
", "advice": "$\\begin{align}y&=\\frac{r+x}{1-rx}\\\\ y(1-rx) &= r+x\\qquad\\text{multiply both sides by }(1-rx)\\\\y-ryx &= r+x\\qquad\\textrm{expand LHS}\\\\y-r &=x+ryx\\qquad\\text{rearrange}\\\\y-r&=x(1+ry)\\qquad\\text{factorise RHS}\\\\\\frac{y-r}{1+ry}&=x\\qquad\\text{divide by }(1+ry)\\\\x&=\\frac{y-r}{1+ry} \\end{align}$
\n$\\begin{align} y&=\\sqrt{\\frac{x-1}{x+1}}\\\\y^2&=\\frac{x-1}{x+1}\\qquad\\text{square}\\\\y^2(x+1)&=x-1\\qquad\\text{multiply by }(x+1)\\\\y^2x+y^2&=x-1\\qquad\\text{expand LHS}\\\\y^2x-x&=-y^2-1\\qquad\\text{rearrange}\\\\x(y^2-1)&=-y^2-1\\qquad\\text{factorise LHS}\\\\x&=\\frac{-y^2-1}{y^2-1} \\end{align}$
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"formula": {"name": "formula", "group": "Ungrouped variables", "definition": "[latex(\"\\\\frac\\{r+x\\}\\{1-rx\\}\"),latex(\"\\\\sqrt\\{\\\\frac\\{x-1\\}\\{x+1\\}\\}\")]", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "[expression(\"(y-r)/(1+y*r)\"),expression(\"(1+y^2)/(1-y^2)\")]", "description": "", "templateType": "anything", "can_override": false}, "select": {"name": "select", "group": "Ungrouped variables", "definition": "random(0..length(formula)-1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["formula", "answer", "select"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\(x=\\)[[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{answer[select]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}