// Numbas version: exam_results_page_options {"name": "Orifice plate flowmeters", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Orifice plate flowmeters", "tags": [], "metadata": {"description": "

A difficult question that involves rearranging a complicated formula, then applying unit conversions to variable values, then evaluating the formula for the selected value. The variable values are randomised.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

In the design of orifice plate flowmeters, the volumetric flowrate, \\(Q\\) (m\\(^3\\)s\\(^{-1}\\)), is given by \\[Q=C_dA_o\\sqrt{\\frac{2gh}{1-A_o^2/A_p^2}}\\] where \\(C_d\\) is a dimensionless discharge coefficient, \\(h\\) (m) is the head difference across the orifice plate, \\(A_o\\) (m\\(^2\\)) is the area of the orifice and \\(A_p\\) (m\\(^2\\)) is the area of the pipe.

", "advice": "

Part (a)

\n

$\\begin{align}Q&=C_dA_o\\sqrt{\\frac{2gh}{1-A_o^2/A_p^2}}\\\\ \\frac{Q}{C_dA_o}&=\\sqrt{\\frac{2gh}{1-A_o^2/A_p^2}}\\\\ \\left(\\frac{Q}{C_dA_o}\\right)^2&=\\frac{2gh}{1-A_o^2/A_p^2}\\\\ \\left(\\frac{C_dA_o}{Q}\\right)^2&=\\frac{1-A_o^2/A_p^2}{2gh}\\\\ \\left(\\frac{C_d}{Q}\\right)^2A_o^2&=\\frac{1}{2gh}-\\frac{A_o^2}{2ghA_p^2}\\\\ \\left(\\frac{C_d}{Q}\\right)^2A_o^2 + \\frac{A_o^2}{2ghA_p^2} &=\\frac{1}{2gh}\\\\ \\left[\\frac{C_d^2}{Q^2} + \\frac{1}{2ghA_p^2}\\right]A_o^2 &=\\frac{1}{2gh}\\\\ \\left[\\frac{C_d^22ghA_p^2+Q^2}{Q^22ghA_p^2}\\right]A_o^2 &=\\frac{1}{2gh}\\\\ A_o^2&=\\frac{1}{2gh}\\times\\frac{Q^22ghA_p^2}{C_d^22ghA_p^2+Q^2}\\\\A_o&=\\frac{QA_p}{\\sqrt{C_d^22ghA_p^2+Q^2}}\\end{align}

\n

Part(b)

\n

$\\sqrt{\\var{Ao_eval_on_pi}}$

\n

To begin with, we need to work out the values of each of the variables in the correct units for the equation.

\n

$Q = \\var{Q}$ cm$^3$s$^{-1}$ = $\\var{Q}\\div 1000000$  m$^3$s$^{-1}= \\var{Q_eval}$ m$^3$s$^{-1}$

\n

Pipe diameter = $\\var{A_p}$ cm = $\\var{A_p} \\div 100$ m = $\\var{2*Apr_eval}$ m

\n

Pipe radius = Pipe diameter $\\div 2 = \\var{2*Apr_eval}\\div 2 = \\var{Apr_eval}$ m

\n

A$_p = \\pi\\times$ pipe radius$^2 = \\pi\\times \\var{Apr_eval}^2 = \\var{Ap_eval}$ m$^2$

\n

C_d = $0.8$

\n

g = $9.81$ ms$^{-2}$

\n

h = $\\var{h} $ mm = $\\var{h}\\div 1000$ m = $\\var{h_eval}$ m

\n

So: 

\n

\\[ \\begin{align}A_o&=\\frac{QA_p}{\\sqrt{C_d^22ghA_p^2+Q^2}}\\\\
&= \\frac{\\var{Q_eval}\\times\\var{dpformat(Ap_eval,5,\"scientific\")}}{\\sqrt{(\\var{C_d})^2\\times 2\\times 9.81 \\times \\var{h_eval}\\times (\\var{dpformat(Ap_eval,5,\"scientific\")})^2+(\\var{Q_eval})^2}} \\\\
&= \\frac{\\var{numerator}}{\\sqrt{\\var{den_under_root_term1}+\\var{dpformat(Q_eval*Q_eval,5,\"scientific\")}}} \\\\
&= \\frac{\\var{numerator}}{\\sqrt{\\var{den_under_root}}}\\\\
&= \\frac{\\var{numerator}}{\\var{denominator}}\\\\
&=\\var{Ao_eval}\\text{ m}\\\\
\\text{And } A_o &= \\pi \\times \\text{ radius}^2\\\\
\\var{Ao_eval} & = \\pi\\times \\text{ radius}^2\\\\
\\text{radius}^2 & =\\frac{\\var{Ao_eval}}{\\pi} \\\\
& = \\var{Ao_eval_on_pi}\\\\
\\text{radius}&=\\sqrt{\\var{Ao_eval_on_pi}}\\\\
\\text{radius}&=\\var{root_Ao_eval_on_pi} \\text{ m}\\\\
& =\\var{root_Ao_eval_on_pi}\\times 100 \\text{ cm}\\\\
& =\\var{root_Ao_eval_on_pi*100} \\text{ cm}\\\\
\\text{Since diameter }&=\\text{ radius }\\times 2\\\\
\\text{diameter } &= \\var{root_Ao_eval_on_pi*100}\\times 2 \\text{ cm}\\\\
\\text{diameter } &= \\var{precround(root_Ao_eval_on_pi*100*2,3)} \\text{ cm}\\\\
\\end{align}\\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Q": {"name": "Q", "group": "Ungrouped variables", "definition": "random(60..150 #10) ", "description": "", "templateType": "anything", "can_override": false}, "A_p": {"name": "A_p", "group": "Ungrouped variables", "definition": "random(5..15)", "description": "", "templateType": "anything", "can_override": false}, "C_d": {"name": "C_d", "group": "Ungrouped variables", "definition": "random(0.4..0.9 #0.1)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(100..600 #100)", "description": "", "templateType": "anything", "can_override": false}, "answer": {"name": "answer", "group": "Ungrouped variables", "definition": "100*sqrt(4*(Q_eval*Ap_eval)/sqrt((Q_eval)^2+19.62*h_eval*(Ap_eval)^2*C_d^2)/pi)", "description": "", "templateType": "anything", "can_override": false}, "Q_eval": {"name": "Q_eval", "group": "Ungrouped variables", "definition": "Q/1000000", "description": "", "templateType": "anything", "can_override": false}, "Apr_eval": {"name": "Apr_eval", "group": "Ungrouped variables", "definition": "A_p/2/100", "description": "", "templateType": "anything", "can_override": false}, "Ap_eval": {"name": "Ap_eval", "group": "Ungrouped variables", "definition": "pi*Apr_eval^2", "description": "", "templateType": "anything", "can_override": false}, "h_eval": {"name": "h_eval", "group": "Ungrouped variables", "definition": "h/1000", "description": "", "templateType": "anything", "can_override": false}, "den_under_root": {"name": "den_under_root", "group": "Ungrouped variables", "definition": "dpformat(C_d^2*2*9.81*h_eval*Ap_eval^2+Q_eval^2,5,\"scientific\")", "description": "

used in the advice. The value inside the denominator square root for area Ao

", "templateType": "anything", "can_override": false}, "numerator": {"name": "numerator", "group": "Ungrouped variables", "definition": "dpformat(Q_eval*Ap_eval,5,\"scientific\")", "description": "

used in the advice. The value of the numerator of the Area A_o

", "templateType": "anything", "can_override": false}, "denominator": {"name": "denominator", "group": "Ungrouped variables", "definition": "dpformat(sqrt(C_d^2*2*9.81*h_eval*Ap_eval^2+Q_eval^2),5,\"scientific\")", "description": "

Used in the advice. The denominator of the area A_o

", "templateType": "anything", "can_override": false}, "test": {"name": "test", "group": "Ungrouped variables", "definition": "\"k\"", "description": "", "templateType": "anything", "can_override": false}, "den_under_root_term1": {"name": "den_under_root_term1", "group": "Ungrouped variables", "definition": "dpformat(C_d^2*2*9.81*h_eval*Ap_eval^2,5,\"scientific\")", "description": "

used in the advice.

", "templateType": "anything", "can_override": false}, "Ao_eval": {"name": "Ao_eval", "group": "Ungrouped variables", "definition": "dpformat((Q_eval*Ap_eval)/(sqrt(C_d^2*2*9.81*h_eval*Ap_eval^2+Q_eval^2)),5,\"scientific\")", "description": "", "templateType": "anything", "can_override": false}, "Ao_eval_on_pi": {"name": "Ao_eval_on_pi", "group": "Ungrouped variables", "definition": "dpformat((Q_eval*Ap_eval)/(sqrt(C_d^2*2*9.81*h_eval*Ap_eval^2+Q_eval^2))/pi,5,\"scientific\")", "description": "

used in the advice

", "templateType": "anything", "can_override": false}, "root_Ao_eval_on_pi": {"name": "root_Ao_eval_on_pi", "group": "Ungrouped variables", "definition": "siground(sqrt((Q_eval*Ap_eval)/(sqrt(C_d^2*2*9.81*h_eval*Ap_eval^2+Q_eval^2))/pi),5)", "description": "

used in the advice

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Q", "A_p", "C_d", "h", "answer", "Q_eval", "Apr_eval", "Ap_eval", "h_eval", "den_under_root_term1", "den_under_root", "numerator", "denominator", "test", "Ao_eval", "Ao_eval_on_pi", "root_Ao_eval_on_pi"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rearrange the equation to solve for the area of the orifice, \\(A_o\\), in terms of the other variables. (Note: to enter the variable name \\(A_1\\) type A_1, for  \\(\\sqrt{a/b}\\)  type sqrt(a/b).)

\n

\\(A_o=\\)[[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "Q*A_p/(sqrt(Q^2+2*g*h*A_p^2*C_d^2))", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": true, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "a_p", "value": ""}, {"name": "c_d", "value": ""}, {"name": "g", "value": ""}, {"name": "h", "value": ""}, {"name": "q", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A volumetric flowrate of \\(\\var{Q}\\) cm\\(^3\\)s\\(^{-1}\\) passes through a \\(\\var{A_p}\\) cm inside diameter pipe. Assuming a discharge coefficient of \\(\\var{C_d}\\), calculate the required orifice diameter, so that the head difference across the orifice plate is \\(\\var{h}\\) mm. You may assume that \\(g=9.81\\) ms\\(^{-2}\\). Give your answer correct to 3 decimal places.

\n

[Hint: be very careful with units.]

\n

orifice diameter\\(=\\)[[0]] cm

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{answer}", "maxValue": "{answer}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}