// Numbas version: finer_feedback_settings {"name": "4. Rounding to \\(n\\) significant figures", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "4. Rounding to \\(n\\) significant figures", "tags": [], "metadata": {"description": "
Round a number to $n$ significant figures. Part of HELM Book 1.1
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "This process is similar to rounding to decimal places but there are some subtle differences.
\n\nTo round a number to \\(n\\) significant figures we look at the \\((n+1)^{\\text{th}}\\) digit in the decimal expansion of the number.
\nFor example:
\n\n\\begin{align} \\frac13&=0.3333\\qquad\\text{rounded to }4\\text{ significant figures}\\\\ \\frac83&=2.66667\\qquad\\text{rounded to }6\\text{ significant figures}\\\\\\pi&=3.412\\qquad\\text{rounded to }4\\text{ significant figures}\\\\2136&=2000\\qquad\\text{rounded to }1\\text{ significant figure}\\\\36.78&=37\\qquad\\text{rounded to }2\\text{ significant figures}\\\\6.2399&=6.240\\qquad\\text{rounded to }4\\text{ significant figures}\\end{align}
\n\nSometimes the phrase “significant figures\" is abbreviated as “s.f.\" or “sig.fig.\"
\n\nWrite down each of these numbers, rounding them to 4 significant figures:
\\(0.12345,\\;-0.44444,\\; 0.5555555,\\; 0.000127351,\\;25679,\\; 123.456789,\\; 3456543\\)
\\(0.1235,\\;-0.4444,\\; 0.5556,\\; 0.0001274,\\;25680,\\; 123.5.\\; 3457000\\)
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "siground(random(-200..200 #0.00000001),random(4..7))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Round \\(\\var{a}\\) to \\(3\\) significant figures.
\nAnswer: [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "siground(a,3)", "maxValue": "siground(a,3)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}], "resources": []}]}], "contributors": [{"name": "Don Shearman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/680/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}