// Numbas version: exam_results_page_options {"name": "Jinhua's copy of Algebraic Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["cons_num", "mult", "x1", "x2", "y1", "y2"], "name": "Jinhua's copy of Algebraic Fractions", "tags": [], "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

\$\\simplify{{cons_num[0]}*x^{x1[0]}*y^{y1[0]}}\$\$\\simplify{{cons_num[0]}*{mult[0]}*x^{x2[0]}*y^{y2[0]}}\$   =   [[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{cons_num[0]}*x^({x1[0]}-{x2[0]})*y^({y1[0]}-{y2[0]})/({cons_num[0]}*{mult[0]})", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\$\\simplify{{cons_num[1]}*x^{x1[1]}*y^{y1[1]}}\$\$\\simplify{{cons_num[1]}*{mult[1]}*x^{x2[1]}*y^{y2[1]}}\$   =   [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{cons_num[1]}*x^({x1[1]}-{x2[1]})*y^({y1[1]}-{y2[1]})/({cons_num[1]}*{mult[1]})", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\$\\simplify{{cons_num[2]}*(x+y)^{x1[2]}}\$\$\\simplify{{cons_num[2]}*{mult[2]}*(x+y)^{x2[2]}}\$   =   [[0]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{cons_num[2]}*(x+y)^({x1[2]}-{x2[2]})/({cons_num[2]}*{mult[2]})", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\$\\simplify{{cons_num[3]}*x^{x1[3]}*y^{y1[3]}}\$\$\\simplify{{cons_num[3]}*{mult[3]}*x^{x2[3]}*y^{y2[3]}}\$   =   [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{cons_num[3]}*x^({x1[3]}-{x2[3]})*y^({y1[3]}-{y2[3]})/({cons_num[3]}*{mult[3]})", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\$\\simplify{{cons_num[4]}*x^{x1[4]}*y^{y1[4]}}\$\$\\simplify{{cons_num[4]}*{mult[4]}*x^{x2[4]}*y^{y2[4]}}\$   =   [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{cons_num[4]}*x^({x1[4]}-{x2[4]})*y^({y1[4]}-{y2[4]})/({cons_num[4]}*{mult[4]})", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Simplify the following fractions.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"y2": {"definition": "repeat(random(2..10 except y1),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "y2", "description": ""}, "cons_num": {"definition": "[random(6..12),random(4..6),random(26,28,30,32,34,36),random(2..8),random(-9..-6)]", "templateType": "anything", "group": "Ungrouped variables", "name": "cons_num", "description": ""}, "y1": {"definition": "repeat(random(2..10),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "y1", "description": ""}, "x2": {"definition": "repeat(random(2..7 except x1),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "x2", "description": ""}, "x1": {"definition": "shuffle(3..10)[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "x1", "description": "

Power of x

"}, "mult": {"definition": "[random(2..4),random(3..6),0.5,random(2..4),random(-5..-3)]", "templateType": "anything", "group": "Ungrouped variables", "name": "mult", "description": ""}}, "metadata": {"notes": "", "description": "

Putting algebraic fractions into their simplest forms

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}