// Numbas version: finer_feedback_settings {"name": "Fractions: equivalent ", "extensions": [], "custom_part_types": [], "resources": [["question-resources/equivalent_fractions.svg", "/srv/numbas/media/question-resources/equivalent_fractions.svg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Fractions: equivalent ", "tags": ["cancelling", "equal fractions", "equivalent fractions", "Fractions", "fractions", "lowest form", "reducing fractions", "simplest form", "simplifying"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {"std": ["all"]}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"denom1": {"name": "denom1", "group": "Ungrouped variables", "definition": "random(2..12 except num1)", "description": "", "templateType": "anything", "can_override": false}, "num4": {"name": "num4", "group": "Ungrouped variables", "definition": "num1*mult3", "description": "", "templateType": "anything", "can_override": false}, "denom3": {"name": "denom3", "group": "Ungrouped variables", "definition": "denom1*mult2", "description": "", "templateType": "anything", "can_override": false}, "denom2": {"name": "denom2", "group": "Ungrouped variables", "definition": "denom1*mult1", "description": "", "templateType": "anything", "can_override": false}, "denom5": {"name": "denom5", "group": "Ungrouped variables", "definition": "random(2..12 except num5)", "description": "", "templateType": "anything", "can_override": false}, "num1": {"name": "num1", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "num2": {"name": "num2", "group": "Ungrouped variables", "definition": "num1*mult1", "description": "", "templateType": "anything", "can_override": false}, "num3": {"name": "num3", "group": "Ungrouped variables", "definition": "num1*mult2", "description": "", "templateType": "anything", "can_override": false}, "denom6": {"name": "denom6", "group": "Ungrouped variables", "definition": "denom5*mult4", "description": "", "templateType": "anything", "can_override": false}, "num6": {"name": "num6", "group": "Ungrouped variables", "definition": "num5*mult4", "description": "", "templateType": "anything", "can_override": false}, "denom4": {"name": "denom4", "group": "Ungrouped variables", "definition": "denom1*mult3", "description": "", "templateType": "anything", "can_override": false}, "num5": {"name": "num5", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "mult3": {"name": "mult3", "group": "Ungrouped variables", "definition": "random(2..10 except [mult1, mult2])", "description": "", "templateType": "anything", "can_override": false}, "mult2": {"name": "mult2", "group": "Ungrouped variables", "definition": "random(2..10 except mult1)", "description": "", "templateType": "anything", "can_override": false}, "mult1": {"name": "mult1", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "mult4": {"name": "mult4", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "mult6": {"name": "mult6", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "mult5": {"name": "mult5", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "FirstName": {"name": "FirstName", "group": "Ungrouped variables", "definition": "repeat(random([\"Ben\", \"He\"], [\"Annie\", \"She\"], [\"Matt\", \"He\"], [\"David\", \"He\"], [\"Steve\", \"He\"], [\"David\", \"He\"], [\"Scott\", \"He\"], [\"Fran\", \"She\"], [\"Jenny\", \"She\"], [\"Lyn\", \"She\"], [\"Judy-anne\", \"She\"], [\"Courtney\", \"She\"]),2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["num1", "denom1", "mult1", "num2", "denom2", "mult2", "num3", "denom3", "mult3", "num4", "denom4", "num5", "denom5", "mult4", "num6", "denom6", "FirstName", "mult5", "mult6"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ".fractiontable table {\n width: 40%; \n padding: 0px; \n border-width: 0px; \n layout: fixed;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n width: 15%; \n border-bottom: 1px solid black; \n text-align: center;\n}\n\n.fractiontable .tdeq \n{\n width: 5%; \n border-bottom: 0px;\n font-size: x-large;\n}\n\n\n.fractiontable th {\n background-color:#aaa;\n}\n/*Fix the height of all cells EXCEPT table-headers to 40px*/\n.fractiontable td {\n height:40px;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
{FirstName[0][0]} has written $\\frac{\\var{num5}}{\\var{denom5}}$ in the equivalent form $\\frac{\\var{num6}}{\\var{denom6}}$.
\n\nWhat has {FirstName[0][0]} done to the first fraction in order to get the second? {FirstName[0][1]} has multiplied the top and bottom by [[0]] .
", "stepsPenalty": "0.5", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "If we multiply the top and bottom of a fraction by a number (not zero) we get an equivalent fraction. We say equivalent because they represent the same amount of the whole.
\n\nFor example, suppose you cut a cake up into 3 parts and throw away one piece, what is left is
Notice in both situations you end up with the same amount of cake!
\n\nSo $\\frac{2}{3}$ is equivalent to $\\frac{4}{6}$ and we can write \\[\\frac{2}{3}=\\frac{4}{6}\\]
\nIf you look at the numbers you might notice that for the second cake we just doubled all the numbers, and in the second fraction all the numbers are two times those in the first fraction. In general equivalent fractions are formed by multiplying (or dividing) the top and bottom of a fraction by the same number.
\nSo if you were asked how a person got from $\\frac{5}{6}$ to the equivalent fraction $\\frac{20}{24}$ you ask yourself 'what do I multiply 5 by to get 20?' and 'what do I multiply 6 by to get 24?' and then realise they must have done the following
\n\\[\\frac{5}{6}=\\frac{5\\times 4}{6\\times 4}=\\frac{20}{24}\\]
\n\n\n\n"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mult4", "maxValue": "mult4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "{FirstName[1][0]} has written $\\frac{\\var{num2*mult5}}{\\var{denom2*mult5}}$ in the equivalent form $\\frac{\\var{num2}}{\\var{denom2}}$.
\n\nWhat has {FirstName[1][0]} done to the first fraction in order to get the second? {FirstName[1][1]} has divided the top and bottom by [[0]] .
", "stepsPenalty": "0.5", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "If we divide the top and bottom of a fraction by a number (not zero) we get an equivalent fraction. We say equivalent because they represent the same amount of the whole.
\n\nFor example, suppose you cut it into 6 parts and throw away two parts, what is left is four sixths of the whole cake, that is, $\\frac{4}{6}$ of the whole cake. Now suppose you have another identical cake, this time you cut a cake up into 3 parts and throw away one piece, what is left is two thirds of the whole cake, that is, $\\frac{2}{3}$ of the whole cake.
\nNotice in both situations you end up with the same amount of cake!
\n\nSo $\\frac{4}{6}$ is equivalent to $\\frac{2}{3}$ and we can write \\[\\frac{4}{6}=\\frac{2}{3}\\]
\nIf you look at the numbers you might notice that for the second cake we just halved all the numbers, and in the second fraction all the numbers are half of those in the first fraction. In general equivalent fractions are formed by dividing (or multiplying) the top and bottom of a fraction by the same number.
\nSo if you were asked how a person got from $\\frac{20}{24}$ to the equivalent fraction $\\frac{5}{6}$ you ask yourself 'what do I divide 20 by to get 5?' and 'what do I divide 24 by to get 6?' and then realise they must have done the following
\n\\[\\frac{20}{24}=\\frac{20\\div 4}{24\\div 4}=\\frac{5}{6}\\]
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "mult5", "maxValue": "mult5", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Please enter numbers to create equivalent fractions.
\n{num1} | \n= | \n[[0]] | \n= | \n{num3} | \n= | \n[[2]] | \n
{denom1} | \n\n | {denom2} | \n\n | [[1]] | \n\n | {denom4} | \n
These are equivalent fractions so the same number that multiplied the numerator must multiply the denominator.
\n\nFor example given:
\n\\[\\frac{8}{5}=\\frac{}{15}\\]
\nyou can see the denominator of 5 was multiplied by 3 to become 15, so to make an equivalent fraction, we would need to multiply the numerator by 3 as well. So the blank must be $8\\times 3$ which is $24$. Your working might look like this:
\n\\[\\frac{8}{5}=\\frac{8\\times 3}{5\\times 3}=\\frac{24}{15}\\]
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num2", "maxValue": "num2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "denom3", "maxValue": "denom3", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num4", "maxValue": "num4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Simplify the following fractions into their lowest forms:
\n(for this question, if your fraction turns into a whole number write it over 1)
\n{num2*mult6} | \n= | \n[[0]] | \n\n | \n | \n | \n |
{denom4*mult6} | \n\n | [[1]] | \n\n | \n | \n | \n |
{num3*mult3} | \n= | \n[[2]] | \n\n | \n | \n | \n |
{denom1*mult3} | \n\n | [[3]] | \n\n | \n | \n | \n |
Divide the top and bottom by their highest common factor, or repeatedly divide the top and bottom by common factors.
\n\nWe can write a fraction in a lower form by dividing the top and bottom by the same number. We can repeatedly do this until there are no numbers that 'go evenly into' both the top and the bottom. At this point, the number is in 'lowest form'.
\n\nFor example:
\nTo simplify $\\frac{360}{132}$ we might first notice that we can divide both the top and bottom by 2 to get $\\frac{180}{66}$, then you might realise you can divide both the top and bottom by 6 to get $\\frac{30}{11}$. At this point, there is no number that will divide both evenly because they have no common factor other than 1. Your working could look like this:
\n\\[\\frac{360}{132}=\\frac{360\\div 2}{132\\div 2}=\\frac{180}{66}=\\frac{180\\div 6}{66\\div 6}=\\frac{30}{11}\\]
\nNotice dividing by 2 and then by 6 is the same as dividing by 12, in this example 12 is the highest common factor of the top and the bottom of the fraction.
\n\nIn general, if you can determine the highest common factor of the two numbers in the fraction you should then divide the top and bottom of the fraction by this number, then there will be no common factors left to divide by and the fraction will be in its lowest form.
\n\nFor example:
\nTo simplify $\\frac{360}{132}$ you determine the highest common factor of $360$ and $132$ is $12$, and so divide the top and bottom of the fraction by $12$ to get $\\frac{30}{11}$. Your working could look like this:
\n\\[\\frac{360}{132}=\\frac{360\\div 12}{132\\div 12}=\\frac{30}{11}\\]
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num2/gcd(num2,denom4)", "maxValue": "num2/gcd(num2,denom4)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "denom4/gcd(num2,denom4)", "maxValue": "denom4/gcd(num2,denom4)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num3/gcd(num3,denom1)", "maxValue": "num3/gcd(num3,denom1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "denom1/gcd(num3,denom1)", "maxValue": "denom1/gcd(num3,denom1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}