// Numbas version: finer_feedback_settings {"name": "Equations: Linear equations 2 - unknowns on both sides", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Equations: Linear equations 2 - unknowns on both sides", "tags": [], "metadata": {"description": "
Solve linear equations with unkowns on both sides. Including brackets and fractions.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "Part a)
\nGiven $\\simplify{{l}({m}w-{n}) = {p}w+{q}}$, we can expand the brackets, get all the $w$'s on the left hand side and all the numbers on the right hand side, and then divide both sides by the coefficient of $w$ to get $w$ by itself.
\n\n$\\simplify{{l}({m}w-{n})}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n
\n | \n | \n |
$\\simplify{{l*m}w+{n*l}}$ | \n$=$ | \n$\\simplify{{p}w+{q}}$ | \n
\n | \n | \n |
$\\simplify[!cancelTerms,unitFactor]{{l*m}w-{n*l}-{p}w}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{p}w+{q}-{p}w}$ | \n
\n | \n | \n |
$\\simplify{{l*m-p}w-{n*l}}$ | \n$=$ | \n$\\var{q}$ | \n
\n | \n | \n |
$\\var{l*m-p}w-\\var{n*l}+\\var{n*l}$ | \n$=$ | \n$\\var{q}+\\var{n*l}$ | \n
\n | \n | \n |
$\\var{l*m-p}w$ | \n$=$ | \n$\\var{q+n*l}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{l*m-p}w}{\\var{l*m-p}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q+n*l}}{\\var{l*m-p}}}$ | \n
\n | \n | \n |
$w$ | \n$=$ | \n$\\displaystyle{\\simplify{{q+n*l}/{l*m-p}}} = \\var{precround(ansA,1)} \\text{ to 1 dp}$ | \n
Part b)
\nGiven $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$, we can multiply both sides by $(y-\\var{f})$ to get rid of the fraction, get all the $y$'s on one side and the numbers on the other side, and then divide both sides by the coefficient of $y$ to get $y$ by itself.
\n\n$\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}$ | \n$=$ | \n$\\var{g}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}\\times(y-\\var{f})$ | \n$=$ | \n$\\var{g}\\times (y-\\var{f})$ | \n
\n | \n | \n |
$\\var{d}y$ | \n$=$ | \n$\\simplify[unitFactor]{{g}y+{-g*f}}$ | \n
\n | \n | \n |
$\\simplify[!cancelTerms,unitFactor]{{d}y+{-g}y}$ | \n$=$ | \n$\\simplify[!cancelTerms,unitFactor]{{g}y+{-g*f}+{-g}y}$ | \n
\n | \n | \n |
$\\var{d-g}y$ | \n$=$ | \n$\\var{-g*f}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{d-g}y}{\\var{d-g}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{-g*f}}{\\var{d-g}}}$ | \n
\n | \n | \n |
$y$ | \n$=$ | \n$\\displaystyle{\\simplify{{-g*f}/{d-g}}}= \\var{precround(ansB,1)}\\text{ to 1 dp}$ | \n
part c)
\nGiven $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$, we can multiply both sides by $\\var{denom1}$ and by $\\var{denom2}$ to get rid of the fractions, get all the $x$'s on one side and the numbers on the other side, and then divide both sides by the coefficient of $x$ to get $x$ by itself.
\n\n$\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{right}$ | \n\n |
\n | \n | \n | \n |
$\\displaystyle{\\left(\\frac{x+\\var{add}}{\\var{denom1}}\\right)\\times\\var{denom1}+\\left(\\frac{x}{\\var{denom2}}\\right)\\times\\var{denom1}}$ | \n$=$ | \n$\\var{right}\\times \\var{denom1}$ | \n(multiply all terms by $\\var{denom1}$) | \n
\n | \n | \n | \n |
$\\displaystyle{x+\\var{add}+\\frac{\\var{denom1}x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{r1}$ | \n\n |
\n | \n | \n | \n |
$\\displaystyle{(x+\\var{add})\\times\\var{denom2}+\\left(\\frac{\\var{denom1}x}{\\var{denom2}}\\right)\\times\\var{denom2}}$ | \n$=$ | \n$\\var{r1}\\times\\var{denom2}$ | \n(multiply all terms by $\\var{denom2}$) | \n
\n | \n | \n | \n |
$\\displaystyle{\\var{denom2}x+\\var{a2}+\\var{denom1}x}$ | \n$=$ | \n$\\var{r12}$ | \n\n |
\n | \n | \n | \n |
$\\var{sumdeno}x+\\var{a2}$ | \n$=$ | \n$\\var{r12}$ | \n(collect like terms) | \n
\n | \n | \n | \n |
$\\var{sumdeno}x$ | \n$=$ | \n$\\var{r12}-\\var{a2}$ | \n(collect like terms) | \n
\n | \n | \n | \n |
$\\var{sumdeno}x$ | \n$=$ | \n$\\var{top}$ | \n\n |
\n | \n | \n | \n |
$x$ | \n$=$ | \n$\\displaystyle{\\simplify{{top}/({sumdeno})}}= \\var{precround(ansD,1)} \\text{ to 1 dp}$ | \n(divide by the coefficient of $x$) | \n
Solve $\\simplify{{l}({m}w-{n}) = {p}w+{q}}$
\n$w=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansA", "maxValue": "ansA", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$,
\n$y=$ [[0]].
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansB", "maxValue": "ansB", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$.
\n$x=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ansD", "maxValue": "ansD", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "100", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}, {"name": "sean hunte", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3167/"}, {"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}]}