// Numbas version: finer_feedback_settings {"name": "Phil's copy of Integration by parts, Exponential 20/10", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "a1", "a2"], "name": "Phil's copy of Integration by parts, Exponential 20/10", "tags": ["algebraic manipulation", "Calculus", "calculus", "exponential function", "integrals", "integration", "integration by parts", "integration of exponential function", "steps", "Steps"], "advice": "
The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
We choose $u = \\simplify[std]{{a}x+{b}}$ and $\\displaystyle\\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.
\nSo $\\displaystyle \\frac{du}{dx} = \\var{a}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.
\nHence,
\\[ \\begin{eqnarray} \\int \\simplify[std]{({a}*x+{b})*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})*e^({c}x) - (1/{c})*Int(({a})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})*e^({c}x) -({a}/{c^2})*e^({c}x) + C}\\\\ &=& \\simplify[std]{(({a}x+{b})/{c}-{a}/{c^2})*e^({c}*x) + C}\\\\ &=& \\simplify[std]{(({a}/{c})x+{b*c-a}/{c^2})*e^({c}*x) + C} \\end{eqnarray} \\]
Hence $\\displaystyle \\simplify[std]{g(x)=({a}/{c})*x+{c*b-a}/{c^2}}$
\nFor this part we choose $u = \\simplify[std]{({a}x+{b})^2}$ and $\\displaystyle \\frac{dv}{dx} = \\simplify[std]{e^({c}x)}$.
\nSo $\\displaystyle \\frac{du}{dx}$ = $\\simplify[std]{{2*a}*({a}*(x)+{b})}$ and $\\displaystyle v = \\simplify[std]{(1/{c})*e^({c}*x)}$.
\nHence,
\\[ \\begin{eqnarray*}I= \\int \\simplify[std]{({a}*x+{b})^2*e^({c}*x)} dx &=& uv - \\int v \\frac{du}{dx} dx \\\\ &=& \\simplify[std]{({1}/{c})*({a}x+{b})^2*e^({c}x) - (1/{c})*Int({2*a}*({a}x+{b})*e^({c}x),x)} \\\\ &=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*Int(({a}x+{b})*e^({c}x),x)}\\dots (*) \\end{eqnarray*}\\]
But in Part a we have aready worked out $\\displaystyle \\simplify[std]{Int(({a}x+{b})*e^({c}*x),x)=(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}$
\nSo on substituting this in equation (*) we find:
\\[ \\begin{eqnarray*}I&=& \\simplify[std]{(1/{c})*({a}x+{b})^2*e^({c}x) -({2*a}/{c})*(({a}/{c})*x+({c*b-a}/{c^2}))*e^({c}*x)+C}\\\\ &=& \\simplify[std]{({a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3})*e^({c}x) +C} \\end{eqnarray*}\\]
Hence $\\displaystyle \\simplify[std]{h(x)={a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}}$
\nMore information on the integration of exponentials is in chapter 3 of your Mathematical Physics book, section 3.8 on page 73-75.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepsPenalty": "0", "prompt": "$I=\\displaystyle \\int \\simplify[std]{({a}x+{b})*e^({c}x)} dx $
You are given that the answer is of the form \\[I=g(x)e^{\\var{c}x}+C\\] for a polynomial $g(x)$. You have to find $g(x)$.
$g(x)=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nYou can get help by clicking on Show steps. You will not lose any marks if you do.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({a}/{c})*x+{c*b-a}/{c^2}", "marks": 2, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "steps": [{"prompt": "The formula for integrating by parts is
\\[ \\int u\\frac{dv}{dx} dx = uv - \\int v \\frac{du}{dx} dx. \\]
Use the result from the first part to find:
\n$\\displaystyle I=\\int \\simplify[std]{({a}x+{b})^2*e^({c}x)} dx $
\nYou are given that the answer is of the form \\[I=h(x)e^{\\var{c}x}+C\\] for a polynomial $h(x)$. You have to find $h(x)$.
\n$h(x)=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{a^2}/{c}*x^2+{2*a*b*c-2*a^2}/{c^2}*x+{b^2*c^2-2*a*b*c+2*a^2}/{c^3}", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "\nFind the following indefinite integrals.
\nInput all numbers as fractions or integers and not decimals.
\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "s3*random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "a1": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "a2": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a2", "description": ""}}, "metadata": {"notes": "\n \t\t3/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation. OK.
\n \t\tGot rid of redundant instructions about inputting constant of integration.
\n \t\tPenalised use of steps in first part, 1 mark. Added message to that effect in first part.
\n \t\tAdded message about not inputting decimals in appropriate places.
\n \t\tChanged marks reflecting the use of steps and degree of difficulty in second part.
\n \t\tImproved Advice display.
\n \t\t", "description": "Given $\\displaystyle \\int (ax+b)e^{cx}\\;dx =g(x)e^{cx}+C$, find $g(x)$. Find $h(x)$, $\\displaystyle \\int (ax+b)^2e^{cx}\\;dx =h(x)e^{cx}+C$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Phil Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/624/"}]}]}], "contributors": [{"name": "Phil Barker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/624/"}]}