// Numbas version: finer_feedback_settings {"name": "Indices: fractional powers (non-algebraic)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Indices: fractional powers (non-algebraic)", "tags": ["exponent", "exponents", "fractional", "index", "index laws", "Index Laws", "indices", "power", "powers", "rational", "roots"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Simplify the following without the use of a calculator. Write your answer in index form using ^ to signify powers.

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"cube": {"name": "cube", "group": "Ungrouped variables", "definition": "random([[8,4],[27,9]])", "description": "", "templateType": "anything", "can_override": false}, "root1": {"name": "root1", "group": "Ungrouped variables", "definition": "random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "power2": {"name": "power2", "group": "Ungrouped variables", "definition": "random(2..12 except root2)", "description": "", "templateType": "anything", "can_override": false}, "base1": {"name": "base1", "group": "Ungrouped variables", "definition": "random(2,3,5,7,11,13,17,19)", "description": "", "templateType": "anything", "can_override": false}, "base2": {"name": "base2", "group": "Ungrouped variables", "definition": "random([2,3,5,7] except base1)", "description": "", "templateType": "anything", "can_override": false}, "square": {"name": "square", "group": "Ungrouped variables", "definition": "random([[4,2],[9,3],[16,4],[25,5],[36,6],[49,7],[64,8],[81,9],[121,11],[144,12]])", "description": "", "templateType": "anything", "can_override": false}, "base4": {"name": "base4", "group": "Ungrouped variables", "definition": "primes[1]", "description": "", "templateType": "anything", "can_override": false}, "zeros": {"name": "zeros", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "primes": {"name": "primes", "group": "Ungrouped variables", "definition": "shuffle([11,13,17,19])[0..2] ", "description": "", "templateType": "anything", "can_override": false}, "root2": {"name": "root2", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "power3": {"name": "power3", "group": "Ungrouped variables", "definition": "random(2..12 except [root2,root3])", "description": "", "templateType": "anything", "can_override": false}, "onezeros": {"name": "onezeros", "group": "Ungrouped variables", "definition": "10^zeros", "description": "", "templateType": "anything", "can_override": false}, "root3": {"name": "root3", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "base3": {"name": "base3", "group": "Ungrouped variables", "definition": "primes[0]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["primes", "base1", "base2", "base3", "base4", "root1", "root2", "power2", "root3", "power3", "square", "cube", "zeros", "onezeros"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By using the definition of the square root you should see that $(\\sqrt{\\var{base1}})^2=\\var{base1}$.

\n

By using index laws you should see that $(\\var{base1}^{1/2})^2=\\var{base1}$.

\n

The above equations imply that $\\sqrt{\\var{base1}}$ can also be written as  [[0]].

\n

\n

Note: If you want to use a fraction as a power you should use brackets to surround your power, for example, type 12^(2/3) for $12^\\frac{2}{3}$.

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given \\[(\\sqrt{\\var{base1}})^2=\\var{base1}=(\\var{base1}^{1/2})^2\\]

\n

we can say \\[\\sqrt{\\var{base1}}=\\var{base1}^{1/2}\\]

\n

Which we would type in as $\\var{base1}\\wedge(1/2)$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{base1}^(1/2)", "answerSimplification": "basic", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": "0.00001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "11", "partialCredit": 0, "message": "

Your answer is longer than necessary.

"}, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "notallowed": {"strings": ["sqrt", "root"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By using the definition of the cube root you should see that $(\\sqrt[3]{\\var{base2}})^3=\\var{base2}$.

\n

By using index laws you should see that $(\\var{base2}^{1/3})^3=\\var{base2}$.

\n

The above equations imply that $\\sqrt[3]{\\var{base2}}$ can also be written as  [[0]].

\n

\n

Note: If you want to use a fraction as a power you should use brackets to surround your power, for example, type 12^(2/3) for $12^\\frac{2}{3}$.

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given \\[(\\sqrt[3]{\\var{base2}})^3=\\var{base2}=(\\var{base2}^{1/3})^3\\]

\n

we can say \\[\\sqrt[3]{\\var{base2}}=\\var{base2}^{1/3}\\]

\n

Which we would type in as $\\var{base2}\\wedge(1/3)$.

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{base2}^(1/3)", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.00001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "11", "partialCredit": 0, "message": "

Your answer is longer than necessary.

"}, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "notallowed": {"strings": ["^0", "sqrt", "root"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Use the same approach you used in the above questions to simplify the following in index form.

\n


$\\sqrt[\\var{root1}]{\\var{base3}}$ = [[0]]

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By the same reasoning as used in the above questions we have $\\sqrt[n]{a}=a^{\\frac{1}{n}}$. 

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{base3}^(1/{root1})", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.00001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "11", "partialCredit": 0, "message": "

Your answer is longer than necessary.

"}, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "notallowed": {"strings": ["^0", "sqrt", "root"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\left(\\sqrt[\\var{root2}]{\\var{base4}}\\right)^\\var{power2}$ = [[0]]

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Convert the root to a fractional power and then use the index laws to deal with the two different powers.

\n
\n

For example, \\[\\sqrt[3]{2}^5=(2^{\\frac{1}{3}})^5=2^{\\frac{5}{3}}\\] 

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{base4}^({power2}/{root2})", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.00001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "11", "partialCredit": 0, "message": "

Your answer is longer than necessary.

"}, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "notallowed": {"strings": ["^0", "sqrt", "root"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\sqrt[\\var{root3}]{\\var{base1}^\\var{power3}}$ = [[0]]

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Convert the root to a fractional power and then use the index laws to deal with the two different powers.

\n
\n

For example, \\[\\sqrt[3]{2^5}=(2^5)^{\\frac{1}{3}}=2^{\\frac{5}{3}}\\] 

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{base1}^({power3}/{root3})", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.00001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "11", "partialCredit": 0, "message": "

Your answer is longer than necessary.

"}, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "notallowed": {"strings": ["^0", "sqrt", "root"], "showStrings": false, "partialCredit": 0, "message": "

Use ^ for powers. Input your answer in index form.

"}, "mustmatchpattern": {"pattern": "?^?", "partialCredit": 0, "message": "", "nameToCompare": ""}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By interpreting the denominator of the fractional power as an nth root, determine the value of the following:

\n


$\\var{square[0]}^{\\frac{1}{2}}$ = [[0]]

\n

$\\var{cube[0]}^{\\frac{2}{3}}$ = [[1]]

\n

$\\var{onezeros}^{\\frac{1}{\\var{zeros}}}$ = [[2]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Convert the denominator of the fractional power to a root. 

\n
\n

For example, $27^{\\frac{2}{3}}=\\sqrt[3]{27}^2=3^2=9$.

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "square[1]", "maxValue": "square[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "cube[1]", "maxValue": "cube[1]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "10", "maxValue": "10", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}