// Numbas version: finer_feedback_settings {"name": "set4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "c", "ans1", "ans2", "a1", "b1", "c1", "ans3", "ans4", "a2", "b2", "c2", "a3", "b3", "c3", "g"], "name": "set4", "tags": ["enumerate", "predicates", "sets"], "advice": "", "rulesets": {}, "parts": [{"prompt": "
1) $S=\\{y\\;|\\;y \\in \\mathbb{Z}, y=\\var{a}x-\\var{c},\\;x \\in \\mathbb{Z}\\text{ and } |y| \\leq \\var{b}\\}$
\n$S\\;$=[[0]]
\n2) $S=\\{y\\;|\\;y \\in \\mathbb{N}, y=\\var{a}x-\\var{c},\\;x \\in \\mathbb{Z}\\text{ and } |y| \\leq \\var{b}\\}$
\n$S\\;$=[[1]]
\n3) $S=\\{x\\:| x \\in \\mathbb{Z}\\text{ and }\\;|\\var{a1}x-\\var{c1}| \\leq \\var{b1}\\}$.
\n$S=\\;$[[2]]
\n4) $S=\\{x\\:| x \\in \\mathbb{N}\\text{ and }\\;|\\var{a1}x-\\var{c1}| \\leq \\var{b1}\\}$.
\n$S=\\;$[[3]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{ans1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{ans2}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{ans3}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{ans4}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "1) $S=\\{\\var{a2}a+\\var{b2}b\\;|\\;a,\\;b \\in \\mathbb{Z},\\;|\\var{a2}a+\\var{b2}b\\,|\\lt \\var{c2}\\}$.
\n$S=\\;$[[0]]
\n2) $S=\\{\\var{a3}a+\\var{b3}b\\;|\\;a,\\;b \\in \\mathbb{Z},\\;|\\var{a3}a+\\var{b3}b\\,|\\lt \\var{c3}\\}$.
\n$S=\\;$[[1]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{set(-c2+1..c2-1)}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{set(g*ceil((-c3+1)/g)..(c3-1)#g)}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Enumerate each of the following sets.
\n\nNote that you input sets in the form set(a,b,c,..,z)
.
For example set(1,2,3)
gives the set $\\{1,2,3\\}$.
The empty set is input as set()
.
Also some labour saving tips:
\nIf you want to input all integers between $a$ and $b$ inclusive then instead of writing all the elements you can input this as set(a..b)
.
If you want to input all integers between $a$ and $b$ inclusive in steps of $c$ then this is input as set(a..b#c)
. So all odd integers from $-3$ to $28$ are input as set(-3..28#2).
Enumerate elements of a set given in predicate form.
\nFor example, find all elements of $A=\\{x\\in\\mathbb{Z}\\;|\\;\\;|2x-5|<4\\}$.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}