// Numbas version: finer_feedback_settings {"name": "Indices: adding powers (algebraic)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Indices: adding powers (algebraic)", "tags": ["adding", "exponent", "exponents", "index", "index laws", "Index Laws", "indices", "multiplying", "power", "powers"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Simplify the following without the use of a calculator. Write your answer in index form using ^ to signify powers.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"sumpow1": {"name": "sumpow1", "group": "Ungrouped variables", "definition": "powers1[0][0]+powers1[1][0]+powers1[2][0]", "description": "", "templateType": "anything", "can_override": false}, "sumpow2": {"name": "sumpow2", "group": "Ungrouped variables", "definition": "wild[0]+1", "description": "", "templateType": "anything", "can_override": false}, "sumpow3": {"name": "sumpow3", "group": "Ungrouped variables", "definition": "dec+neg+num/den", "description": "", "templateType": "anything", "can_override": false}, "sumpow4": {"name": "sumpow4", "group": "Ungrouped variables", "definition": "powers3[0][0]+powers3[1][0]", "description": "", "templateType": "anything", "can_override": false}, "neg": {"name": "neg", "group": "Ungrouped variables", "definition": "random(-12..-1)", "description": "", "templateType": "anything", "can_override": false}, "wild": {"name": "wild", "group": "Ungrouped variables", "definition": "random([[2,\"two\"],[3,\"three\"],[4,\"four\"],[5,\"five\"],[6,\"six\"]])", "description": "", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "den": {"name": "den", "group": "Ungrouped variables", "definition": "random([10,20,25])", "description": "", "templateType": "anything", "can_override": false}, "powers1": {"name": "powers1", "group": "Ungrouped variables", "definition": "shuffle([[2,\"two\"],[3,\"three\"],[4,\"four\"],[5,\"five\"],[6,\"six\"]])[0..3]", "description": "2..6
", "templateType": "anything", "can_override": false}, "powers3": {"name": "powers3", "group": "Ungrouped variables", "definition": "shuffle([[2,\"two\"],[3,\"three\"],[4,\"four\"],[5,\"five\"],[6,\"six\"]])[0..2]", "description": "", "templateType": "anything", "can_override": false}, "dec": {"name": "dec", "group": "Ungrouped variables", "definition": "random(0.1..0.9#0.1)", "description": "", "templateType": "anything", "can_override": false}, "powers2": {"name": "powers2", "group": "Ungrouped variables", "definition": "shuffle([[0,\"zero\"],[1,\"one\"],wild])", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "\n", "maxRuns": 100}, "ungrouped_variables": ["powers1", "wild", "powers2", "sumpow1", "sumpow2", "dec", "neg", "num", "den", "sumpow3", "powers3", "sumpow4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$ w ^\\var{powers1[0][0]}\\times w ^\\var{powers1[1][0]} \\times w ^\\var{powers1[2][0]}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Recall:
\nSo in total how many $w$s are there multiplied together?
\nWell, $\\var{powers1[0][0]}+\\var{powers1[1][0]}+\\var{powers1[2][0]}=\\var{sumpow1}$. And so our answer is $w^\\var{sumpow1}$.
\n\nNote, in general $a^ba^c=a^{b+c}$.
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\n//var studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// We just want to check that the student has written \"something to the power of something\"\n//var rule = Numbas.jme.compile('?? ^ ??');\n\n// Check the student's answer matches the pattern. \n//var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n\n// If not, take away marks\n//if(!m) {\n //this.multCredit(0,'Your answer is not in the form $x^y$.');\n//}\n", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "w^{sumpow1}", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": "0.001", "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "notallowed": {"strings": ["^0"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "valuegenerators": [{"name": "w", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x^\\var{powers2[0][0]}\\times x^\\var{powers2[1][0]} \\times x^\\var{powers2[2][0]}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Recall:
\nSo in total how many $x$s are there multiplied together?
\nWell, $0+1+\\var{wild[0]}=\\var{sumpow2}$. And so our answer is $x^\\var{sumpow2}$.
\n\nNote, in general $a^ba^c=a^{b+c}$, $a^0=1$ and $a^1=a$.
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\n///var studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// We just want to check that the student has written \"something to the power of something\"\n//var rule = Numbas.jme.compile('?? ^ ??');\n\n// Check the student's answer matches the pattern. \n//var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n\n// If not, take away marks\n//if(!m) {\n //this.multCredit(0,'Your answer is not in the form $x^y$.');\n//}\n", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^{sumpow2}", "answerSimplification": "!otherNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "notallowed": {"strings": ["^0"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Use the same approach you used in the above questions to simplify the following in index form.
\n
$\\displaystyle a^\\var{dec}\\times a^\\var{neg} \\times a^{\\var{num}/\\var{den}}$ = [[0]]
Note: If you want to use a fraction as a power you should use brackets to surround your power, for example, type 12^(2/3) for $12^\\frac{2}{3}$.
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Since the bases are all the same ($a$) and we are multiplying, we can simply add the powers.
\nYou could convert the fraction to a decimal and then add them all. Or you could add them all as fractions.
\n"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\n///var studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// We just want to check that the student has written \"something to the power of something\"\n//var rule = Numbas.jme.compile('?? ^ ??');\n\n// Check the student's answer matches the pattern. \n//var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n\n// If not, take away marks\n//if(!m) {\n //this.multCredit(0,'Your answer is not in the form $x^y$.');\n//}\n", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "a^{sumpow3}", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "notallowed": {"strings": ["^0"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "valuegenerators": [{"name": "a", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$z^\\var{powers3[0][0]}\\times y^\\var{wild[0]} \\times z^\\var{powers3[1][0]}$ = [[0]]
\n\nNote: use * for multiplication.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "It is important to note that the bases are different! We can only add the powers if the bases are the same.
\n\nRecall:
\nSo in total what do we have?
\n $y^\\var{wild[0]}z^\\var{sumpow4}$.
Note we would type y^{wild[0]}*z^{sumpow4}.
\n"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\n///var studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// We just want to check that the student has written \"something to the power of something\"\n//var rule = Numbas.jme.compile('?? ^ ??');\n\n// Check the student's answer matches the pattern. \n//var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n\n// If not, take away marks\n//if(!m) {\n //this.multCredit(0,'Your answer is not in the form $x^y$.');\n//}\n", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "y^{wild[0]}*z^{sumpow4}", "answerSimplification": "basic", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "musthave": {"strings": ["^"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "notallowed": {"strings": ["^0"], "showStrings": false, "partialCredit": 0, "message": "Use ^ for powers. Input your answer in index form.
"}, "valuegenerators": [{"name": "y", "value": ""}, {"name": "z", "value": ""}]}], "sortAnswers": false}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Is the following statement true or false?
\n$m\\times p^\\var{powers1[0][0]} = (mp)^\\var{powers1[0][0]}$
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "It is important to note that the bases are different! Index laws only can be applied if the bases are the same (or can be made the same).
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True
", "False
"], "matrix": [0, "1"], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Is the following statement true or false?
\n$q\\times u^\\var{powers1[0][0]} = (qu)^\\var{powers1[0][0]+1}$
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "It is important to note that the bases are different! Index laws only can be applied if the bases are the same (or can be made the same). We can only add the powers if the bases are the same.
"}], "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["True
", "False
"], "matrix": [0, "1"], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}