// Numbas version: finer_feedback_settings {"name": "Negatives: combined question", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Negatives: combined question", "tags": ["negative numbers", "Negative Numbers", "negatives"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Complete the following without the use of a calculator:

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "n[0]-n[1]+n[2]*n[3]+n[4]+mult1*(-1)^power+mult2*(-1)^(power+1)", "description": "", "templateType": "anything", "can_override": false}, "mult1": {"name": "mult1", "group": "Ungrouped variables", "definition": "random(4..12)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "shuffle(-12..-2)[0..5]", "description": "", "templateType": "anything", "can_override": false}, "power": {"name": "power", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "mult2": {"name": "mult2", "group": "Ungrouped variables", "definition": "random(4..12)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "power", "mult1", "mult2", "ans1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\var{n[0]}-(\\var{n[1]})--\\var{n[2]}\\times(\\var{n[3]})+\\left(\\frac{\\var{n[4]*n[4]}}{\\var{n[4]}}\\right)+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}$ = [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

There are several ways to approach this. However, I will start working left to right, changing things slowly for the sake of clarity. There is no need to do so many lines when you are attempting this:

\n

First I will determine the signs:

\n

\\begin{align}&\\var{n[0]}-(\\var{n[1]})--\\var{n[2]}\\times(\\var{n[3]})+\\left(\\frac{\\var{n[4]*n[4]}}{\\var{n[4]}}\\right)+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}\\color{red}{+\\var{abs(n[1])}}--\\var{n[2]}\\times(\\var{n[3]})+\\left(\\frac{\\var{n[4]*n[4]}}{\\var{n[4]}}\\right)+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}\\color{red}{-\\var{abs(n[2])}}\\times(\\var{n[3]})+\\left(\\frac{\\var{n[4]*n[4]}}{\\var{n[4]}}\\right)+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}\\color{red}{+\\var{abs(n[2]*n[3])}}+\\left(\\frac{\\var{n[4]*n[4]}}{\\var{n[4]}}\\right)+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}\\color{red}{-\\var{abs(n[4])}}+\\var{mult1}(-1)^\\var{power}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}+\\var{mult1}(\\color{red}{\\var{(-1)^power}})+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}\\color{red}{\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}}+\\var{mult2}(-1)^\\var{power+1}\\\\
&=\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}+\\var{mult2}(\\color{red}{\\var{(-1)^(power+1)}})\\\\
&=\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}\\color{red}{\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}}\\end{align}
Now I will add/subtract from left to right as required:

\n

\\begin{align}
&\\var{n[0]}+\\var{abs(n[1])}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}\\\\
&=\\color{red}{\\var{n[0]+abs(n[1])}}+\\var{abs(n[2]*n[3])}-\\var{abs(n[4])}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}\\\\
&=\\color{red}{\\var{n[0]+abs(n[1])+abs(n[2]*n[3])}}-\\var{abs(n[4])}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}\\\\
&=\\color{red}{\\var{n[0]+abs(n[1])+n[2]*n[3]+n[4]}}\\var{if(2|power,latex('+'),latex('-'))}\\var{abs(mult1)}\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}\\\\
&=\\color{red}{\\var{n[0]+abs(n[1])+n[2]*n[3]+n[4]+mult1*(-1)^power}}\\var{if(2|power,latex('-'),latex('+'))}\\var{abs(mult2)}\\\\
&=\\color{red}{\\var{ans1}}
\\end{align}

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans1}", "maxValue": "{ans1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}