// Numbas version: finer_feedback_settings {"name": "Trig Equations 3 (sin^2x+cos^2x)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Trig Equations 3 (sin^2x+cos^2x)", "tags": [], "metadata": {"description": "
solve trig equation that requires use of s^s+c^2=1. with worked solutions.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "", "advice": "\\begin{align}
\\simplify{{a}sin^2(x)+({a}{c}-{b})cos(x)+({b}{c}-{a})}&=0 \\\\\\\\
\\text{first replace $sin^2(x) \\text{ with } 1-cos^2(x)$} \\\\\\\\
\\simplify{{a}(1-cos^2 ( x) )+({a}{c}-{b})cos(x)+({b}{c}-{a})}&=0 \\\\\\\\
\\text{then move everything to the other side and simplify} \\\\\\\\
0&=\\simplify{{a}cos^2(x)+({b}-{a}{c})cos(x)+(-{b}{c})} \\\\\\\\
\\text{now you can factorise} \\\\\\\\
0&=(\\simplify{{a}cos(x)+{b}})(cos(x)-\\var{c}) \\\\\\\\
cos(x)&=-\\frac{\\var{b}}{\\var{a}} \\text{ or } \\var{c} \\\\\\\\
\\text{there are no solutions to $cos(x)=\\var{c}$ so this leaves only}\\\\\\\\
x_1 &=cos^{-1}-\\frac{\\var{b}}{\\var{a}}= \\var{x1_3} \\\\\\\\
x_2 &=2\\pi-\\var{x1_3}=\\var{x2_3}
\\end{align}
Solve
\n$\\simplify{{a}sin^2(x)+({a}{c}-{b})cos(x)+({b}{c}-{a})}=0$ betwwen $0\\leq x\\leq 360^o$
\n\nGive your answers below in ascending order and to 3 significant figures
\n\n[[0]]$^o$ or [[1]]$^o$
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "x1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x1}", "maxValue": "{x1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "x2", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x2}", "maxValue": "{x2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "precisionType": "sigfig", "precision": "3", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Mike Phipps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14139/"}]}]}], "contributors": [{"name": "Mike Phipps", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14139/"}]}