// Numbas version: finer_feedback_settings {"name": "Eigenfunction expansion", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Eigenfunction expansion", "tags": [], "metadata": {"description": "

Find the eigenfunctions of an irregular Sturm–Liouville problem and hence solve an inhomogeneous boundary value problem by writing the solution as an eigenfunction expansion.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Consider the eigenvalue problem

\n

\\[x^2\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}x^2} - \\simplify{{b-1}x}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} + \\lambda x^{\\var{2b}}y = 0 \\qquad \\mbox{for $x \\in [0,\\var{a}]$}\\]

\n

with the boundary conditions $y(0) = 0$ and $y(\\var{a}) = 0$.

", "advice": "

a)

\n

This equation can be rewritten as

\n

\\[\\dfrac{\\mathrm{d}}{\\mathrm{d}x}x^{-\\var{b-1}}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} + \\lambda \\simplify{x^{{b-1}}}y = 0,\\]

\n

so we have $P(x) = x^{-\\var{b-1}}$, $Q(x) = 0$, and $\\omega(x) = \\simplify{x^{{b-1}}}$.  This means that, at $x=0$, $\\omega(x)$ is not strictly positive and $P(x)$ is not defined.  Therefore this is an irregular Sturm–Liouville problem.

\n

b)

\n

To put the equation into canonical form, we define a new independent variable $t = \\displaystyle\\int\\dfrac{1}{P(x)}\\,\\mathrm{d}x = \\int \\simplify{x^{{b-1}}}\\,\\mathrm{d}x = \\dfrac{1}{\\var{b}}x^{\\var{b}}$, so that the equation becomes

\n

\\[\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}t^2} + \\lambda y = 0.\\]

\n

When we impose the boundary conditions, we find that the eigenfunctions are $y_n = \\sin(\\sqrt{\\lambda_n}\\,t)$, where $\\lambda_n = \\left(\\simplify{{b}/{a}^{b}}\\pi n\\right)^2$.

\n

c)

\n

The eigenfunctions $y_n(x)$ are orthogonal with respect to the inner product on $[0,\\var{a}]$ with weight fuction $\\omega(x) = \\simplify{x^{{b-1}}}$.  Therefore

\n

$\\qquad\\qquad\\displaystyle\\sum_{n=1}^{\\infty}a_ny_n(x) = 1$

\n

$\\qquad\\Rightarrow \\displaystyle\\sum_{n=1}^{\\infty}a_n\\langle y_m,y_n\\rangle = \\langle y_m,1\\rangle$

\n

$\\qquad\\Rightarrow a_m\\langle y_m,y_m\\rangle = \\langle y_m,1\\rangle$

\n

$\\qquad\\Rightarrow a_n = \\dfrac{\\langle y_n,1\\rangle}{\\|y_n\\|^2}$

\n

as indicated in the question.  Expressing this result as a ratio of two integrals, we have

\n

$\\qquad\\qquad a_n = \\dfrac{\\int_0^{\\var{a}}\\sin\\bigl(\\pi n\\simplify{(x/{a})^{b}}\\bigr) \\simplify{x^{{b-1}}} \\, \\mathrm{d}x}{\\int_0^{\\var{a}}\\sin\\bigl(\\pi n\\simplify{(x/{a})^{b}}\\bigr)^2 \\simplify{x^{{b-1}}} \\, \\mathrm{d}x}$

\n

$\\qquad\\qquad = \\dfrac{\\int_0^{\\simplify{{a}^{b}/{b}}}\\sin\\bigl(\\simplify{{b}pi n t/{a}^{b}}\\bigr) \\, \\mathrm{d}t}{\\int_0^{\\simplify{{a}^{b}/{b}}}\\sin\\bigl(\\simplify{{b}pi n t/{a}^{b}}\\bigr)^2 \\, \\mathrm{d}t} \\qquad$where $t = \\dfrac{1}{\\var{b}}x^{\\var{b}}$, as in part (b)

\n

$\\qquad\\qquad = \\dfrac{- \\simplify{{a}^{b}/({b}pi n)}\\left[\\cos\\bigl(\\simplify{{b}pi n t/{a}^{b}}\\bigr)\\right]_0^{\\simplify{{a}^{b}/{b}}}}{\\tfrac{1}{2}\\left[t + \\simplify{{a}^{b}/(2{b}pi n)}\\sin\\bigl(2\\simplify{{b}pi n t/{a}^{b}}\\bigr)\\right]_0^{\\simplify{{a}^{b}/{b}}}}$

\n

$\\qquad\\qquad = - \\dfrac{2}{\\pi n}\\bigl[\\cos(\\pi n) - 1\\bigr]$

\n

$\\qquad\\qquad = \\begin{cases}\\dfrac{4}{\\pi n}, \\qquad &\\mbox{if $n$ is odd,} \\\\ 0, \\qquad &\\mbox{if $n$ is even.}\\end{cases}$

\n

d)

\n

We can solve this inhomogeneous problem using the method of eigenfunction expansion, i.e. we can look for a solution in the form

\n

\\[y = \\sum_{n=1}^\\infty b_ny_n(x)\\]

\n

where $y_n$ are the eigenfunctions we found previously.  These eigenfunctions have the property that $L[y_n] = - \\lambda_n y$, where $L$ is the operator

\n

\\[L = \\dfrac{1}{\\simplify{x^{b-1}}}\\dfrac{\\mathrm{d}}{\\mathrm{d}x}\\dfrac{1}{\\simplify{x^{b-1}}}\\dfrac{\\mathrm{d}}{\\mathrm{d}x}.\\]

\n

The inhomogeneous equation can be written as

\n

\\[L[y] + \\lambda y = 1\\]

\n

and when we substitute our eigenfunction expansion into this, we get

\n

$\\qquad\\qquad\\sum_{n=1}^\\infty b_n\\bigl(L[y_n] + \\lambda y_n\\bigr) = 1$

\n

$\\qquad\\Rightarrow\\sum_{n=1}^\\infty b_n(\\lambda - \\lambda_n) y_n = 1$

\n

Comparing this with the answer to part (c), we must have

\n

\\[b_n(\\lambda - \\lambda_n) = a_n = \\begin{cases}\\dfrac{4}{\\pi n}, \\qquad &\\mbox{if $n$ is odd,} \\\\ 0, \\qquad &\\mbox{if $n$ is even.}\\end{cases}\\]

\n

So the number of solutions of this inhomogeneous problem depends on the value of $\\lambda$:

\n\n

In particular, the problem cannot be solved if $\\lambda = \\lambda_1,\\lambda_3,\\lambda_5,\\ldots = \\left(\\simplify{{b}/{a}^{b}}\\pi\\right)^2,\\left(\\simplify{3{b}/{a}^{b}}\\pi\\right)^2,\\left(\\simplify{5{b}/{a}^{b}}\\pi\\right)^2,\\ldots$

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 3#1)", "description": "

The end point of the domain in $x$.

", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 3#1)", "description": "

The exponent of $x$.

", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1 .. 2#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Write this differential equation in the Sturm–Liouville form,

\n

\\[\\dfrac{\\mathrm{d}}{\\mathrm{d}x}\\left(P(x)\\dfrac{\\mathrm{d}y}{\\mathrm{d}x}\\right) + Q(x)y + \\lambda\\omega(x)y = 0.\\]

\n

This is an example of an irregular Sturm–Liouville problem, because (tick all that apply):

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": "1", "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$P(x)$ is not defined over the whole domain", "$Q(x)$ is not strictly positive over the whole domain", "$\\omega(x)$ is not strictly positive over the whole domain", "the boundary conditions do not have the right format", "$\\omega(x)$ is not defined over the whole domain"], "matrix": ["1", "-1", "1", "-1", "-1"], "distractors": ["", "", "", "", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

By writing the differential equation in canonical form, show that the eigenfunctions are

\n

$y_n(x) = \\sin\\bigl(\\pi n\\simplify{(x/{a})^{b}}\\bigr)$, and find the corresponding eigenvalues $\\lambda_n$.

\n

$\\lambda_n = $[[0]]$(\\pi n)^2.$

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{({b}/{a^b})^2}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Even though this is an irregular Sturm–Liouville problem, you may assume from here on that it has all of the properties of a regular Sturm–Liouville problem.

\n

Find the values of the coefficients $a_n$ such that

\n

$\\displaystyle\\sum_{n=1}^{\\infty}a_ny_n(x) = 1 \\qquad \\mbox{for $\\ 0 \\leqslant x \\leqslant \\var{a}$,}$

\n

where $y_n(x)$ are the eigenfunctions found in part (b).

\n

Hint: The coefficients can be found using the formula $a_n = \\dfrac{\\langle y_n, 1\\rangle}{\\|y_n\\|^2}$, for an appropriate choice of inner product.  The integrals can be evaluated using the same change of variable that you made in part (b).

\n

$a_n = $[[0]] if $n$ is odd

\n

$a_n = $[[1]] if $n$ is even

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "4/(pi*n)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "n", "value": ""}]}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "0", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now consider the inhomogeneous Boundary Value Problem

\n

\\[x^2\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}x^2} - \\simplify{{b-1}x}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} + \\lambda x^{\\var{2b}}y = x^{\\var{2b}} \\qquad \\mbox{for $x \\in [0,\\var{a}]$}\\]

\n

with the boundary conditions $y(0) = 0$ and $y(\\var{a}) = 0$.

\n

For which of the following values of $\\lambda$ can this problem be solved?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\lambda = 0$", "$\\lambda = \\left(\\simplify{{2c-1}{b}/{a^b}}\\pi\\right)^2$", "$\\lambda = \\left(\\simplify{{2c}{b}/{a^b}}\\pi\\right)^2$"], "matrix": ["1", "-1", "1"], "distractors": ["", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Toby Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/400/"}]}]}], "contributors": [{"name": "Toby Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/400/"}]}