// Numbas version: finer_feedback_settings {"name": "BIDMAS practise 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "BIDMAS practise 5", "tags": [], "metadata": {"description": "

Use the BODMAS rule to determine the order in which to evaluate some arithmetic expressions. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "

Roots can be considered as powers, while fractions can be considered as a bracket divided by a bracket.

\n

\\[\\displaystyle \\text{Numerator is considered as a bracket } (\\var{oint}^2+ \\sqrt{\\var{eint*eint}}) \\text{ and the denominator as } (3 \\times 2 - 2 \\times 2)\\text{.}\\]

\n

Before we evaluate numerator, we calculate powers:

\n

\\[\\begin{align} \\sqrt{\\var{eint*eint}} &= \\var{eint} \\text{,}
\\\\\\var{oint}^2 &= \\var{oint*oint} \\text{.} \\end{align}\\]

\n

Before we evaluate denominator we calculate multiplications:

\n

\\[\\begin{align} 3 \\times 2 &= 6 \\text{ and } \\\\ 2 \\times 2 &= 4\\text{.} \\end{align}\\]

\n

Performing addition/subtraction as the last step in evaluating numerator/denominator we get:

\n

\\[ \\begin{align} (\\var{oint}^2+ \\sqrt{\\var{eint*eint}}) &= \\var{oint*oint} + \\var{eint}
\\\\&= \\var{oint*oint + eint}
\\\\\\text{and}
\\\\(3 \\times 2 - 2 \\times 2) &= 6 - 4
\\\\&= 2 \\end{align} \\]

\n

So the fraction

\n

\\[\\begin{align} \\displaystyle \\frac{(\\var{oint}^2+ \\var{eint})}{(3 \\times 2 - 2 \\times 2)} &= \\frac{\\var{(oint*oint + eint)}}{2}\\text{.} \\end{align}\\]

\n

Evaluating the final bracket we get:

\n

\\[(10 - 2) = 8\\text{.}\\]

\n

As we evaluated all brackets, we can continue with:

\n

\\[\\displaystyle \\frac{\\var{oint}^2+ \\sqrt{\\var{eint*eint}}}{3 \\times 2 - 2 \\times 2} + (10 - 2) \\div \\var{pint} = \\frac{\\var{(oint*oint + eint)}}{2} + 8 \\div \\var{pint} \\]

\n

Now, division has a priority over addition so since $\\frac{\\var{(oint*oint + eint)}}{2} = \\var{(oint*oint + eint)/2}$ and $8 \\div \\var{pint} = \\var{8/pint}$:

\n

\\[\\begin{align} \\frac{\\var{(oint*oint + eint)}}{2} + 8 \\div \\var{pint} &= \\var{(oint*oint + eint)/2} + \\var{8/pint} \\\\&= \\var{(oint*oint + eint)/2 + 8/pint}\\text{.} \\end{align}\\]

\n

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"int": {"name": "int", "group": "Ungrouped variables", "definition": "random(2..10 except sint)", "description": "

Random integer from 2 to 10.

", "templateType": "anything", "can_override": false}, "oint": {"name": "oint", "group": "Ungrouped variables", "definition": "random(1..9 #2 except int except sint)", "description": "

Random odd integer from 1 to 9.

", "templateType": "anything", "can_override": false}, "bint": {"name": "bint", "group": "Ungrouped variables", "definition": "random(20..50)", "description": "

A random slightly bigger integer.

", "templateType": "anything", "can_override": false}, "pint": {"name": "pint", "group": "Ungrouped variables", "definition": "random(1..4 except 3)", "description": "

1, 2 or 4.

", "templateType": "anything", "can_override": false}, "eint": {"name": "eint", "group": "Ungrouped variables", "definition": "random(1..9 #2 except int except sint)", "description": "

Random even integer from 2 to 10.

", "templateType": "anything", "can_override": false}, "sint": {"name": "sint", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "

Random integer from 1 to 5.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["int", "sint", "eint", "oint", "pint", "bint"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle \\frac{\\var{oint}^2+ \\sqrt{\\var{eint*eint}}}{3 \\times 2 - 2 \\times 2} + (10 - 2) \\div \\var{pint}  =$  [[0]] 

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Root is another way of writing a power, e.g. $\\sqrt{4} = 4^{\\frac{1}{2}}$.

\n

Fraction means the numerator divided by the denominator, these two can be thought of as brackets while the fraction itself is a division.

\n

For example,

\n

\\begin{align}
\\sqrt4 + \\frac{4+11}{5} &= 4^{\\frac{1}{2}} + (4+11) \\div 5 \\\\
&= 4^{\\frac{1}{2}} + 15 \\div 5 & \\text{(BRACKETS)}\\\\
&= 2 + 15 \\div 5 & \\text{(ORDINALS)} \\\\
&= 2 + 3 & \\text{(DIVISION/multiplication)} \\\\
&= 5 \\text{ .} & \\text{(ADDITION/subtraction)}
\\end{align}

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{(oint*oint + sqrt(eint*eint))/2 + 8/pint}", "maxValue": "{(oint*oint + sqrt(eint*eint))/2 + 8/pint}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": "50", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}