// Numbas version: finer_feedback_settings {"name": "Jinhua's copy of Jinhua's copy of Differentiation 9 - Chain Rule corrected", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c"], "name": "Jinhua's copy of Jinhua's copy of Differentiation 9 - Chain Rule corrected", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
This question is the chain rule again.
\nThis time, the function that is being differentiated is the term inside the brackets.
\nThis is another 'chain rule by inspection' kind of question to save time and paper.
\nFirstly, differentiate everything inside the brackets.
\nThen multiply the existing coefficient of the bracket by this result.
\nFinally, multiply by the original magnitude of the power and decrease the power by one.
\nIf these steps confuse you, look back at 'Differentiation - Basic Polynomial Expressions' and make sure you understand fully how to work those types of questions out.
", "rulesets": {}, "parts": [{"prompt": "$y=(\\var{c[0]}x-1)^3$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*{c[0]}({c[0]}x-1)^2", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=(\\var{c[1]}-x)^5$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-5({c[1]}-x)^4", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=(x^2+\\var{c[2]})^4$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "8x*(x^2+{c[2]})^3", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=(x^3-\\var{c[3]})^2$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "6x^2*(x^3-{c[3]})", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=(1-\\var{c[4]}x^2)^3$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-6{c[4]}x*(1-{c[4]}x^2)^2", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the following using the chain rule.
\nDo not write out $dy/dx$; only input the differentiated right hand side of each equation.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"c": {"definition": "repeat(random(2..9),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}}, "metadata": {"notes": "", "description": "Using the chain rule with polynomials
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}