// Numbas version: finer_feedback_settings {"name": "Ugur's copy of Working with standard index form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Ugur's copy of Working with standard index form", "type": "question", "statement": "

Working with numbers that are very large or very small can be tricky.

\n

Standard form allows us to simplify these numbers, using powers of 10.

\n
The standard index form can be defined as
\n
\\[A \\times 10^n,\\]
\n
where $1 ≤ A < 10$ and $n$ is an integer, e.g. $2.26 \\times 10^5$ is a standard form of a number 226000.
\n
\n

 

\n

Write the following in standard index form (for example, for $2.01\\times 10^5$ we would write 2.01*10^5 in the gap).

\n
", "variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"int": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "int", "definition": "random(2..9)"}, "A3dp": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "A3dp", "definition": "random(1..10 #0.001)"}, "B": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "B", "definition": "repeat(random(3..9 #0.01), 4)"}, "small5": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "small5", "definition": "random(0.00001..0.0001 #0.00000001)"}, "A5dp": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "A5dp", "definition": "random(1..10 #0.00001)"}, "ran": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "ran", "definition": "random([6,7,8,9,10])"}, "A": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "A", "definition": "repeat(random(1..10 #0.01 except 10), 3)"}}, "extensions": [], "functions": {}, "tags": ["conversion", "converting", "standard form", "standard index form", "taxonomy"], "variable_groups": [], "parts": [{"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "!collectnumbers", "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": "1", "notallowed": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["^-2", "^(-2)"]}, "vsetrange": [0, 1], "musthave": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["*10^2"]}, "variableReplacements": [], "answer": "{A[2]}*10^2", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "

$\\var{A[2]*10^2} = $  [[0]]

", "type": "gapfill"}, {"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "!collectnumbers", "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": "1", "notallowed": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["*10^1"]}, "vsetrange": [0, 1], "musthave": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["*10^", "-1"]}, "variableReplacements": [], "answer": "{A3dp}*10^(-1)", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "

$\\var{A3dp*10^(-1)} = $  [[0]]

", "type": "gapfill"}, {"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "!collectnumbers", "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": "1", "notallowed": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["^-7", "^(-7)"]}, "vsetrange": [0, 1], "musthave": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["*10^7"]}, "variableReplacements": [], "answer": "{A5dp}*10^7", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "

$\\var{precround(A5dp*10^7,0)} =$  [[0]]

", "type": "gapfill"}, {"scripts": {}, "variableReplacements": [], "marks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showpreview": true, "variableReplacementStrategy": "originalfirst", "vsetrangepoints": 5, "showCorrectAnswer": true, "showFeedbackIcon": true, "answersimplification": "!collectnumbers", "checkingaccuracy": 0.001, "expectedvariablenames": [], "marks": "1", "notallowed": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["10^5"]}, "vsetrange": [0, 1], "musthave": {"message": "", "partialCredit": 0, "showStrings": false, "strings": ["*10^", "-5"]}, "variableReplacements": [], "answer": "{{small5}*10^5}*10^(-5)", "checkvariablenames": false, "type": "jme"}], "showCorrectAnswer": true, "prompt": "

$\\var{small5} = $  [[0]]

", "type": "gapfill"}], "ungrouped_variables": ["A3dp", "A5dp", "small5", "A", "ran", "B", "int"], "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Convert a variety of numbers from decimal to standard index form.

"}, "preamble": {"css": "", "js": ""}, "advice": "

Converting from decimal to a standard form, we are looking for $A \\times 10^n$.

\n

We need make the first number ($A$) between 1 and 10, so we put the decimal place after the first non-zero digit.

\n

 

\n

a)

\n

In $\\var{A[2]*10^2}$, the first non-zero digit is $\\var{siground(A[2] - 0.5, 1)}$ so we get $A = \\var{A[2]}$.

\n

If we moved the decimal place in $\\var{A[2]}$ so it matches our original number $\\var{A[2]*10^2}$, we would go 2 places to the right, so $n = 2$.

\n

 

\n

b)

\n

In $\\var{A3dp*10^(-1)}$, the first non-zero digit is $\\var{siground(A3dp - 0.5, 1)}$ so we get $A = \\var{A3dp}$.

\n

If we moved the decimal place in $\\var{A3dp}$ so it matches our original number $\\var{A3dp*10^(-1)}$, we would go 1 place to the left, so $n = -1$.

\n

 

\n

c)

\n

In $\\var{precround(A5dp*10^7,0)}$ the first non-zero digit is $\\var{siground(A5dp - 0.5, 1)}$ so we get $A = \\var{A5dp}$.

\n

If we moved the decimal place in $\\var{A5dp}$ so it matches our original number $\\var{precround(A5dp*10^7,0)}$, we would go 7 places to the right, so $n = 7$.

\n

 

\n

d)

\n

In $\\var{small5}$ the first non-zero digit is {siground({{small5}*10^5} - 0.5, 1)} so we get $A = \\var{small5*10^5}$.

\n

If we moved the decimal place in $\\var{small5*10^5}$ so it matches our original number $\\var{small5}$, we would go 5 places to the left, so $n = -5$.

\n

", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}