// Numbas version: exam_results_page_options {"name": "Ugur's copy of Indices - Multiplication/Division", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"d": {"name": "d", "description": "", "group": "Ungrouped variables", "definition": "random(-9..-1)", "templateType": "anything"}, "h": {"name": "h", "description": "", "group": "Ungrouped variables", "definition": "random(2..5 except g)", "templateType": "anything"}, "j": {"name": "j", "description": "", "group": "Ungrouped variables", "definition": "random(2..3 except f)", "templateType": "anything"}, "c": {"name": "c", "description": "", "group": "Ungrouped variables", "definition": "random(0..9)", "templateType": "anything"}, "g": {"name": "g", "description": "", "group": "Ungrouped variables", "definition": "random(2..5)", "templateType": "anything"}, "a": {"name": "a", "description": "", "group": "Ungrouped variables", "definition": "random(2..9)", "templateType": "anything"}, "f": {"name": "f", "description": "", "group": "Ungrouped variables", "definition": "random(2..3)", "templateType": "anything"}, "b": {"name": "b", "description": "", "group": "Ungrouped variables", "definition": "random(2..9 except a)", "templateType": "anything"}}, "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "name": "Ugur's copy of Indices - Multiplication/Division", "variablesTest": {"condition": "", "maxRuns": 100}, "metadata": {"description": "

Simplifying indices.

", "licence": "Creative Commons Attribution 4.0 International"}, "variable_groups": [], "functions": {}, "tags": [], "extensions": [], "parts": [{"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following indices law to help answer this question:

\n

$x^a \\times x^b = x^{a+b}$

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "x", "value": ""}], "notallowed": {"strings": ["*"], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "x^({a}+{b})", "adaptiveMarkingPenalty": 0, "prompt": "

$x^\\var{a} \\times x^\\var{b}$

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following law to help answer this question:

\n

$x^a \\times x^b = x^{a+b}$

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "p", "value": ""}], "notallowed": {"strings": ["*"], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "p^({c}+{d})", "adaptiveMarkingPenalty": 0, "prompt": "

$p^\\var{c} \\times p^\\var{d}$

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following law to answer this question:

\n

$(ax^b)^c = a^cx^{bc}$

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "k", "value": ""}], "notallowed": {"strings": [")", "("], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "{a}^{f}*k^({b}*{f})", "adaptiveMarkingPenalty": 0, "prompt": "

$(\\var{a}k^\\var{b})^\\var{f}$

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following law:

\n

$x^a \\times x^b = x^{a+b}$

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "y", "value": ""}], "notallowed": {"strings": ["*"], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "y^(({a}+{b})/({a}*{b}))", "adaptiveMarkingPenalty": 0, "prompt": "

$y^{1/\\var{a}} \\times y^{1/\\var{b}}$

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following law:

\n

$x^a \\div x^b = x^{a-b}$

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "c", "value": ""}], "notallowed": {"strings": ["/"], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "c^({a}-{b})", "adaptiveMarkingPenalty": 0, "prompt": "

$c^\\var{a}$$c^\\var{b}$

\n

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

Use the following law to answer this question:

\n

$\\frac{ax^c}{bx^d}= \\frac{a}{b}x^{(c-d)}$

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "h", "value": ""}], "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "{a}/{b}*h^({c}-{d})", "adaptiveMarkingPenalty": 0, "prompt": "

$\\var{a}h^\\var{c}$$\\var{b}h^\\var{d}$

\n

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}, {"checkingType": "absdiff", "steps": [{"unitTests": [], "showCorrectAnswer": true, "adaptiveMarkingPenalty": 0, "extendBaseMarkingAlgorithm": true, "prompt": "

This question differs from part f due to the brackets. Using principles of BODMAS, the brackets need to be expanded first. 

\n

$(4d)^\\var{g}$ expands to $4^\\var{g}d^\\var{g}$ and $(2d)^\\var{h}$ expands to $2^\\var{h}d^\\var{h}$

\n

Now you are left with a simple division question as follows:

\n

$\\frac{4^{\\var{g}}d^{\\var{g}}}{2^{\\var{h}}d^{\\var{h}}}$

\n

\n

Use the principle:

\n

$\\frac{ax^c}{bx^d}= \\frac{a}{b}x^{(c-d)}$ to answer the question.

\n

", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "customName": "", "useCustomName": false, "showFeedbackIcon": true, "marks": 0, "type": "information"}], "valuegenerators": [{"name": "d", "value": ""}], "notallowed": {"strings": ["/"], "showStrings": false, "partialCredit": 0, "message": ""}, "stepsPenalty": 0, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "showPreview": true, "marks": 1, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "vsetRange": [0, 1], "answer": "(4^{g})/(2^{h})*d^{g-h}", "adaptiveMarkingPenalty": 0, "prompt": "

$(4d)^\\var{g}$$(2d)^\\var{h}$

\n

", "type": "jme", "customMarkingAlgorithm": "", "customName": "", "failureRate": 1, "useCustomName": false, "checkVariableNames": false, "answerSimplification": "all", "vsetRangePoints": 5, "checkingAccuracy": 0.001}], "statement": "

Simplify each of the following expressions, giving your answer in its simplest form.

\n

Click 'Show steps' for guidance on which index law is applicable.

", "ungrouped_variables": ["a", "b", "c", "d", "f", "g", "h", "j"], "advice": "

Recall the laws of indices to help solve the problems:

\n

$x^a \\times x^b = x^{a+b}$

\n

$x^a \\div x^b = x^{a-b}$

\n

$x^{-a} = \\frac{1}{x^a}$

\n

$(x^a)^b = x^{ab}$

\n

$(\\frac{x}{y})^a = \\frac{x^a}{y^a}$

\n

$x^\\frac{a}{b} = (\\sqrt[b]{x})^{a}$

\n

$x^0 = 1$

\n

\n

Worked Solutions:

\n

Part a)               $x^{(\\var{a}+\\var{b})}=\\simplify{x^{({a}+{b})}}$

\n

Part b)               $p^{(\\var{c}+\\var{d})}=\\simplify{p^{({c}+{d})}}$

\n

Part c)               $\\var{a}^\\var{f}\\times{k^{(\\var{b}\\times\\var{f})}}=\\simplify{{a}^{f}*k^{({b}*{f})}}$

\n

Part d)               $y^{((\\var{a}+\\var{b})/(\\var{a}\\times\\var{b}))}=y^{\\frac{\\simplify{{a}+{b}}}{\\simplify{{a}*{b}}}}$

\n

Part e)               $c^{(\\var{a}-\\var{b})}=c^\\simplify{({a}-{b})}$

\n

Part f)                $\\frac{\\var{a}}{\\var{b}}h^{\\var{c}-\\var{d}}=\\frac{\\var{a}}{\\var{b}}{\\simplify{h^{{c}-{d}}}}$

\n

Part g)               $\\frac{4^\\var{g}}{2^\\var{h}}\\times{d^{\\var{g}-\\var{h}}}=\\simplify{(4^{g})/(2^{h})*d^{g-h}}$

\n

Part h)               $\\frac{6^\\var{g}}{9^\\var{h}}\\times{p^{\\var{h}\\var{j}-\\var{g}\\var{f}}}=\\simplify{(6^{g})/(9^{h})*p^{h*j-g*f}}$

", "rulesets": {}, "contributors": [{"name": "Sarah Turner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/881/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Kevin Bohan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3363/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}]}], "contributors": [{"name": "Sarah Turner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/881/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}, {"name": "Kevin Bohan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3363/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}