// Numbas version: finer_feedback_settings {"name": "Cf Maths In class test two mock paper question 7 (i)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "p"], "name": "Cf Maths In class test two mock paper question 7 (i)", "tags": [], "advice": "

These questions use the quotient rule.

\n

The quotient rule is defined as

\n

$\\frac{dy}{dx}=\\frac{v\\frac{du}{dx}+u\\frac{dv}{dx}}{v^2}$

\n

when $y=\\frac{u}{v}$

\n

Worked example for:

\n

$x$$\\simplify{x+{c[0]}}$

\n

This expression is the result of $x$ divided by ($\\simplify{x+{c[0]}}$).

\n

We can therefore say:

\n

$u=x$

\n

and

\n

$v=\\simplify{x+{c[0]}}$,

\n

Hence meaning that $y=\\frac{u}{v}$.

\n

\n

We already have what $u$ and $v$ equal, so all we have to do is find what $\\frac{du}{dx}$ and $\\frac{dv}{dx}$ are, and then substitute everything into the rule.

\n

Differentiating with respect to $x$, we get:

\n

$\\frac{du}{dx}=1$

\n

and

\n

$\\frac{dv}{dx}=1$.

\n

As there are no powers or coefficients of $x$ that are $>1$, this is a very simple version of the quotient rule, but knowing how to work out this equation formally will make more difficult looking problems just as simple.

\n

Substituting in all the results we've found, we get:

\n

$\\frac{dy}{dx}=\\frac{1(\\simplify{x+{c[0]}})+1(x)}{\\simplify{(x+{c[0]})^2}}$

\n

We then simplify, collecting all the terms, to get our final answer of:

\n

$\\frac{dy}{dx}=\\simplify{((2x+{c[0]}))/(x+{c[0]})^2}$

", "rulesets": {"std": ["all"]}, "parts": [{"variableReplacements": [], "prompt": "

$\\simplify{{c[1]}x+{c[2]}}$$\\simplify{{c[3]}+x^{p[1]}}$

", "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({c[1]}*({c[3]}+x^{p[1]})-{p[1]}*x^({p[1]}-1)*({c[1]}x+{c[2]}))/({c[3]}+x^{p[1]})^2", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "statement": "

Differentiate the following expressions with respect to $x$ using the quotient rule.

\n

Simplify your answers as much as possible.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "variables": {"p": {"definition": "repeat(random(2..4),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "repeat(random(-9..9 except 0),12)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}}, "metadata": {"notes": "", "description": "

An introduction to using the quotient rule

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}