// Numbas version: finer_feedback_settings {"name": "Collecting like terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Collecting like terms", "tags": ["algebra", "Algebra", "collecting like terms", "like terms", "simplifying"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Simplify the following by collecting like terms.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0])[0..3]", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0])[0..2]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..2]", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..2]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10))[0..3]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(list(-10..10)+[0,0,0,0])[0..3]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[!collectnumbers]{{a[1]}x+{b[1]}y+{c[1]}z+{b[2]}y+{a[2]}x+{c[2]}z+{a[0]}x+{c[0]}z+{b[0]}y}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Like terms are terms where the variable part is the same. For example, $4x$ and $-x$ have the same variable part $x$. However, $3x$ and $-2y$ have different variable parts and are therefore unlike terms (or not like terms).
\nWe can only collect like terms! Just like we can't say 2 m + 3 cm equals 5 m or 5 cm, we can't say $2x+3y$ equals $5x$ or $5y$! We can, however, say $2a+3a=5a$.
\nIn our question we look at all the terms with a variable part of $x$ and add up all the corresponding coefficients, we do the same for the $y$ terms and the $z$ terms:
\n\\[\\begin{align}
&\\simplify[!collectnumbers]{{a[1]}x+{b[1]}y+{c[1]}z+{b[2]}y+{a[2]}x+{c[2]}z+{a[0]}x+{c[0]}z+{b[0]}y}\\\\
&=\\simplify[basic]{({a[1]}+{a[2]}+{a[0]})x+({b[1]}+{b[2]}+{b[0]})y+({c[1]}+{c[2]}+{c[0]})z}\\end{align}\\]
We present this as the sum of three unlike terms:
\n\\[\\simplify{{sum(a)}x+{sum(b)}y+{sum(c)}z}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum(a)}*x+{sum(b)}*y+{sum(c)}*z", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "maxlength": {"length": "14", "partialCredit": 0, "message": ""}, "valuegenerators": [{"name": "x", "value": ""}, {"name": "y", "value": ""}, {"name": "z", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[!collectnumbers]{{d[1]}x^2+{f[1]}x+{g[1]}+{d[0]}x^2+{f[0]}x+{g[0]}}$ = [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Like terms are terms where the variable part is the same. For example, $4x$ and $-x$ have the same variable part $x$. However, $3x^2$ and $-2x$ have different variable parts and are therefore unlike terms (or not like terms).
\nWe can only collect like terms! Just like we can't say 2 m + 3 cm equals 5 m or 5 cm, we can't say $2x^2+3x$ equals $5x^2$ or $5x$! We can, however, say $2x^2+3x^2=5x^2$.
\nIn our question we look at all the terms with a variable part of $x^2$ and add up all the corresponding coefficients (the numbers in front of the variables), we do the same for the $x$ terms and the constant terms (the terms with no variable part):
\n\\[\\begin{align}&\\simplify[!collectnumbers]{{d[1]}x^2+{f[1]}x+{g[1]}+{d[0]}x^2+{f[0]}x+{g[0]}}\\\\&=\\simplify[basic]{({d[1]}+{d[0]})x^2+({f[1]}+{f[0]})x+({g[1]}+{g[0]})}\\end{align}\\]
\nWe present this as the sum of three unlike terms:
\n\\[\\simplify[!noleadingminus, basic]{{sum(d)}x^2+{sum(f)}x+{sum(g)}}\\]
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{sum(d)}x^2+{sum(f)}x+{sum(g)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "`?`+-$n*`?(x^2) + `?`+-$n*`?x + `?`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}