// Numbas version: finer_feedback_settings {"name": "CF Maths Portfolio 6 - Logarithms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "p"], "name": "CF Maths Portfolio 6 - Logarithms", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

The differentiate of $\\ln(x)$ is $\\frac{1}{x}$.

\n

This proof can be found here.

\n

\n

For natural logarithms in the form $u\\ln(a(x))$ where $a(x)$ is a function of $x$, the derivative is $u\\frac{a'(x)}{a(x)}$.

", "rulesets": {}, "parts": [{"prompt": "

$y=\\var{c[1]}\\ln(\\var{c[2]}x)$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{c[1]}/x", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\ln(x^\\var{p}+\\var{c[3]})$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{p}x^({p}-1)/(x^{p}+{c[3]})", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$y=\\ln(\\var{c[3]}x^2+\\var{c[4]}x+\\var{c[5]})$

\n

$\\frac{dy}{dx}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(2{c[3]}x+{c[4]})/({c[3]}x^2+{c[4]}x+{c[5]})", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Differentiate the following.

\n

Do not write out $dy/dx$; only input the differentiated right hand side of each equation. Make sure to put ( ) on both the top and bottom of a fraction. \"/\" is the line for fraction.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"p": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "repeat(random(2..7),8)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}}, "metadata": {"notes": "", "description": "

Differentiating the natural logarithm

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}