// Numbas version: finer_feedback_settings {"name": "CF Maths Portfolio 6-Differentiation 14 - Mixed", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "p", "ex"], "name": "CF Maths Portfolio 6-Differentiation 14 - Mixed", "tags": [], "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "advice": "
There are various online resources which provide summaries and methods of the different differentiation rules: chain rule, product rule and quotient rule.
\nTo differentiate the functions in this question you have to identify which rules are appropriate. There may be a combination of rules needed.
\nExample:
\nFor $y=\\ln(2x^3-1)\\cos(4x)+\\frac{1}{3}e^{6x}$
\nThe first term contains both a $\\ln$ function and a $\\cos$ function multiplied together. Differentiating here, therefore, requries the product rule. However, each of these functions contain another function within, so the chain rule will be also required.
\nThe second term is an exponential function with another function in $x$ in the power. This will require the chain rule.
\n\nThus, the process of differentiation is carried out as follows.
\n$\\frac{dy}{dx}=\\frac{d}{dx}\\left(\\ln(2x^3-1)\\cos(4x)\\right)+\\frac{d}{dx}\\left(\\frac{1}{3}e^{6x}\\right)$
\n\nAssign the appropriate subsitutions:
\n$\\text{Let}\\;t=2x^3-1$
\n$\\text{Let}\\;u=\\ln(2x^3-1)=\\ln(t)$
\n$\\text{Let}\\;s=4x$
\n$\\text{Let}\\;v=\\cos(4x)=\\cos(s)$
\n$\\text{Let}\\;r=6x$
\n$\\text{Let}\\;w=\\frac{1}{3}e^{6x}=\\frac{1}{3}e^{r}$
\n\nFor the first term:
\n$\\frac{d}{dx}\\left(\\ln(2x^3-1)\\cos(4x)\\right)=u\\frac{dv}{dx}+v\\frac{du}{dx}$
\n$\\therefore\\;\\;\\;\\frac{d}{dx}\\left(\\ln(2x^3-1)\\cos(4x)\\right)=u\\left(\\frac{dv}{ds}\\times\\frac{ds}{dx}\\right)+v\\left(\\frac{du}{dt}\\times\\frac{dt}{dx}\\right)$
\n$\\therefore\\;\\;\\;\\frac{d}{dx}\\left(\\ln(2x^3-1)\\cos(4x)\\right)=\\ln(2x^3-1)\\left(-\\sin(4x)\\times4\\right)+\\cos(4x)\\left(\\frac{1}{t}\\times6x^2\\right)$
\nThis is then simplified:
\n$\\frac{d}{dx}\\left(\\ln(2x^3-1)\\cos(4x)\\right)\\ln(2x^3-1)\\left(-\\sin(4x)\\times4\\right)+\\cos(4x)\\left(\\frac{1}{t}\\times6x^2\\right)=\\frac{6x^{2}cos(4x)}{2x^3-1}-4\\ln(2x^3-1)\\sin(4x)$
\n\nFor the second term:
\n$\\frac{d}{dx}\\left(\\frac{1}{3}e^{6x}\\right)=\\frac{dw}{dr}\\times\\frac{dr}{dx}=\\frac{1}{3}e^{6x}\\times6=2e^{6x}$
\n\nThe final differentiated function is therefore found to be:
\n$\\left(\\frac{dy}{dx}\\right)=\\frac{6x^{2}cos(4x)}{2x^3-1}-4\\ln(2x^3-1)\\sin(4x)+2e^{6x}$
", "rulesets": {"std": ["all"]}, "parts": [{"prompt": "$f(x)=\\var{ex[0]}e^x\\sin(\\var{c[0]}x)+x^\\var{ex[1]}$
\n$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ex[0]}e^x*(sin({c[0]}x)+{c[0]}cos({c[0]}x))+{ex[1]}x^({ex[1]}-1)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$f(x)=\\var{ex[1]}\\sin(\\var{c[1]}x)\\cos(\\var{c[2]}x)$
\n$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ex[1]}({c[1]}cos({c[1]}x)cos({c[2]}x)-{c[2]}sin({c[1]}x)sin({c[2]}x))", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$f(x)=$
$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({c[3]}-{c[4]}x+{c[4]}x*ln({ex[2]}x))/(x*({c[3]}-{c[4]}x)^2)", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$f(x)=\\var{ex[3]}\\sin(\\ln(x))$
\n$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({ex[3]}/x)*cos(ln(x))", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$f(x)=$
$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({p}e^({p}x)({c[5]}-x)+e^({p}x))/({c[5]}-x)^2", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$f(x)=\\ln(\\var{ex[4]}x)\\sin(\\var{ex[5]}x)$
\n$f'(x)=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "(1/x)*sin({ex[5]}x)+{ex[5]}ln({ex[4]}x)*cos({ex[5]}x)", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "Find $f'(x)$ of the following, using the appropriate rule.
\nDo not write out $f'(x)=$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"p": {"definition": "random(-4..-2)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "repeat(random(2..5),10)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "ex": {"definition": "repeat(random(2..5),6)", "templateType": "anything", "group": "Ungrouped variables", "name": "ex", "description": "extra coeff's added
"}}, "metadata": {"description": "Identifying the correct rule to use
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}