// Numbas version: finer_feedback_settings {"name": "Solving linear equations: two step", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solving linear equations: two step", "tags": ["algebra", "balancing equations", "Linear equations", "linear equations", "rearranging equations", "solving equations", "Solving equations", "two step equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "(c-b)/a", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "(g-d)/(-f)", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "(k+j)*h", "description": "", "templateType": "anything", "can_override": false}, "ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "n*m+l", "description": "", "templateType": "anything", "can_override": false}, "ans5": {"name": "ans5", "group": "Ungrouped variables", "definition": "p/q-r", "description": "", "templateType": "anything", "can_override": false}, "ans6": {"name": "ans6", "group": "Ungrouped variables", "definition": "u*t/s", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,-1,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,b])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..12 except a)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..12 except [f,g])", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(-12..12 except [0])", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(list(2..12)+[100])", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(list(2..12)+[20,50,100,200])", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-13..0 except -j)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(2..12 except [h])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12 except l)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,1,-1])", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(-12..12 except[0,q])", "description": "", "templateType": "anything", "can_override": false}, "s": {"name": "s", "group": "Ungrouped variables", "definition": "random([-13,-11,-7,-5,-3,-2,13,11,7,5,3,2])", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "u": {"name": "u", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random([13,11,7,5,3,2] except s)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "ans1", "d", "f", "g", "ans2", "h", "j", "k", "ans3", "l", "m", "n", "ans4", "p", "q", "r", "ans5", "s", "t", "u", "ans6"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
Given $\\var{a}x+\\var{b}=\\var{c}$, solving for $x$ gives $x=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\var{a}x+\\var{b}=\\var{c}$, we can subtract $\\var{b}$ from both sides to get $\\var{a}x$ by itself, and then divide both sides by $\\var{a}$ to get $x$ by itself.
\n\n| $\\var{a}x+\\var{b}$ | \n$=$ | \n$\\var{c}$ | \n
| \n | \n | \n |
| $\\var{a}x+\\var{b}-\\var{b}$ | \n$=$ | \n$\\var{c}-\\var{b}$ | \n
| \n | \n | \n |
| $\\var{a}x$ | \n$=$ | \n$\\var{c-b}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{a}x}{\\var{a}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{c-b}}{\\var{a}}}$ | \n
| \n | \n | \n |
| $x$ | \n$=$ | \n$\\displaystyle{\\simplify{{c-b}/{a}}}$ | \n
Given $\\var{d}-\\var{f}y=\\var{g}$, $y=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\var{d}-\\var{f}y=\\var{g}$, we can subtract $\\var{d}$ from both sides to get $-\\var{f}y$ by itself, and then divide both sides by $-\\var{f}$ to get $y$ by itself.
\n\n| $\\var{d}-\\var{f}y$ | \n$=$ | \n$\\var{g}$ | \n
| \n | \n | \n |
| $\\var{d}-\\var{f}y-\\var{d}$ | \n$=$ | \n$\\var{g}-\\var{d}$ | \n
| \n | \n | \n |
| $-\\var{f}y$ | \n$=$ | \n$\\var{g-d}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{-f}y}{\\var{-f}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{g-d}}{\\var{-f}}}$ | \n
| \n | \n | \n |
| $y$ | \n$=$ | \n$\\displaystyle{\\simplify{{g-d}/{-f}}}$ | \n
Rearrange $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$ to determine the value of $z$.
\n$z=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$, we add $\\var{j}$ to both sides to get $\\displaystyle{\\frac{z}{\\var{h}}}$ by itself and then multiply both sides by $\\var{h}$ to get $z$ by itself.
\n| $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}$ | \n$=$ | \n$\\var{k}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}+\\var{j}$ | \n$=$ | \n$\\var{k}+\\var{j}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{z}{\\var{h}}}$ | \n$=$ | \n$\\var{k+j}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{z}{\\var{h}}\\times\\var{h}}$ | \n$=$ | \n$\\var{k+j}\\times \\var{h}$ | \n
| \n | \n | \n |
| $z$ | \n$=$ | \n$\\var{ans3}$ | \n
Solve $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$ for $a$.
\n$a=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$, we can multiply both sides by $\\var{m}$ to get $a-\\var{l}$ by itself and then add $\\var{l}$ to both sides to get $a$ by itself.
\n| $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}$ | \n$=$ | \n$\\var{n}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}\\times \\var{m}$ | \n$=$ | \n$\\var{n}\\times\\var{m}$ | \n
| \n | \n | \n |
| $a-\\var{l}$ | \n$=$ | \n$\\var{n*m}$ | \n
| \n | \n | \n |
| $a-\\var{l}+\\var{l}$ | \n$=$ | \n$\\var{n*m}+\\var{l}$ | \n
| \n | \n | \n |
| $a$ | \n$=$ | \n$\\var{ans4}$ | \n
Solve $\\var{p}=\\var{q}(\\var{r}+b)$.
\n$b=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\var{p}=\\var{q}(\\var{r}+b)$, we can divide both sides by $\\var{q}$ to get $\\var{r}+b$ by itself and then subtract $\\var{r}$ from both sides to get $b$ by itself.
\n| $\\var{p}$ | \n$=$ | \n$\\var{q}(\\var{r}+b)$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{p}}{\\var{q}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q}(\\var{r}+b)}{\\var{q}}}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{{p}/{q}}}$ | \n$=$ | \n$\\var{r}+b$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{{p}/{q}}}-\\var{r}$ | \n$=$ | \n$\\var{r}+b-\\var{r}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n$=$ | \n$b$ | \n
| \n | \n | \n |
| $b$ | \n$=$ | \n$\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n
Solve $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$.
\n$w=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$, we can multiply both sides by $\\var{t}$ to get $\\var{s}w$ by itself and then divide both sides by $\\var{s}$ to get $w$ by itself.
\n| $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}$ | \n$=$ | \n$\\var{u}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}\\times\\var{t}$ | \n$=$ | \n$\\var{u}\\times\\var{t}$ | \n
| \n | \n | \n |
| $\\var{s}w$ | \n$=$ | \n$\\var{u*t}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{s}w}{\\var{s}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{u*t}}{\\var{s}}}$ | \n
| \n | \n | \n |
| $w$ | \n$=$ | \n$\\displaystyle{\\simplify{{u*t}/{s}}}$ | \n