// Numbas version: finer_feedback_settings {"name": "Solving linear equations: two step", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solving linear equations: two step", "tags": ["algebra", "balancing equations", "Linear equations", "linear equations", "rearranging equations", "solving equations", "Solving equations", "two step equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "(c-b)/a", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "(g-d)/(-f)", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "(k+j)*h", "description": "", "templateType": "anything", "can_override": false}, "ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "n*m+l", "description": "", "templateType": "anything", "can_override": false}, "ans5": {"name": "ans5", "group": "Ungrouped variables", "definition": "p/q-r", "description": "", "templateType": "anything", "can_override": false}, "ans6": {"name": "ans6", "group": "Ungrouped variables", "definition": "u*t/s", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,-1,1])", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,b])", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..12 except a)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..12 except [f,g])", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(-12..12 except [0])", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(list(2..12)+[100])", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(list(2..12)+[20,50,100,200])", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-13..0 except -j)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(2..12 except [h])", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12 except l)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(-12..12 except [0,1,-1])", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(-12..12 except[0,q])", "description": "", "templateType": "anything", "can_override": false}, "s": {"name": "s", "group": "Ungrouped variables", "definition": "random([-13,-11,-7,-5,-3,-2,13,11,7,5,3,2])", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "u": {"name": "u", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "random([13,11,7,5,3,2] except s)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "ans1", "d", "f", "g", "ans2", "h", "j", "k", "ans3", "l", "m", "n", "ans4", "p", "q", "r", "ans5", "s", "t", "u", "ans6"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\var{a}x+\\var{b}=\\var{c}$, solving for $x$ gives $x=$ [[0]].

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\var{a}x+\\var{b}=\\var{c}$, we can subtract $\\var{b}$ from both sides to get $\\var{a}x$ by itself, and then divide both sides by $\\var{a}$ to get $x$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{a}x+\\var{b}$$=$$\\var{c}$ 
 
$\\var{a}x+\\var{b}-\\var{b}$$=$$\\var{c}-\\var{b}$
 
$\\var{a}x$$=$$\\var{c-b}$
 
$\\displaystyle{\\frac{\\var{a}x}{\\var{a}}}$ $=$$\\displaystyle{\\frac{\\var{c-b}}{\\var{a}}}$
 
$x$$=$$\\displaystyle{\\simplify{{c-b}/{a}}}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{c-b}/{a}", "maxValue": "{c-b}/{a}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\var{d}-\\var{f}y=\\var{g}$,  $y=$ [[0]].

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\var{d}-\\var{f}y=\\var{g}$, we can subtract $\\var{d}$ from both sides to get $-\\var{f}y$ by itself, and then divide both sides by $-\\var{f}$ to get $y$ by itself.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{d}-\\var{f}y$$=$$\\var{g}$ 
 
$\\var{d}-\\var{f}y-\\var{d}$$=$$\\var{g}-\\var{d}$
 
$-\\var{f}y$$=$$\\var{g-d}$
 
$\\displaystyle{\\frac{\\var{-f}y}{\\var{-f}}}$ $=$$\\displaystyle{\\frac{\\var{g-d}}{\\var{-f}}}$
 
$y$$=$$\\displaystyle{\\simplify{{g-d}/{-f}}}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{d-g}/{f}", "maxValue": "{d-g}/{f}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rearrange $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$ to determine the value of $z$.

\n

$z=$ [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$, we add $\\var{j}$ to both sides to get $\\displaystyle{\\frac{z}{\\var{h}}}$ by itself and then multiply both sides by $\\var{h}$ to get $z$ by itself.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}$$=$$\\var{k}$ 
 
$\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}+\\var{j}$$=$$\\var{k}+\\var{j}$
 
$\\displaystyle{\\frac{z}{\\var{h}}}$$=$$\\var{k+j}$
 
$\\displaystyle{\\frac{z}{\\var{h}}\\times\\var{h}}$ $=$$\\var{k+j}\\times \\var{h}$
 
$z$$=$$\\var{ans3}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans3}", "maxValue": "{ans3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$ for $a$.

\n

$a=$ [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$, we can multiply both sides by $\\var{m}$ to get $a-\\var{l}$ by itself and then add $\\var{l}$ to both sides to get $a$ by itself.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}$$=$$\\var{n}$ 
 
$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}\\times \\var{m}$$=$$\\var{n}\\times\\var{m}$
 
$a-\\var{l}$$=$$\\var{n*m}$
 
$a-\\var{l}+\\var{l}$ $=$$\\var{n*m}+\\var{l}$
 
$a$$=$$\\var{ans4}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ans4}", "maxValue": "{ans4}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\var{p}=\\var{q}(\\var{r}+b)$.

\n

$b=$ [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\var{p}=\\var{q}(\\var{r}+b)$, we can divide both sides by $\\var{q}$ to get $\\var{r}+b$ by itself and then subtract $\\var{r}$ from both sides to get $b$ by itself.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{p}$$=$$\\var{q}(\\var{r}+b)$ 
 
$\\displaystyle{\\frac{\\var{p}}{\\var{q}}}$$=$$\\displaystyle{\\frac{\\var{q}(\\var{r}+b)}{\\var{q}}}$
 
$\\displaystyle{\\simplify{{p}/{q}}}$$=$$\\var{r}+b$
 
$\\displaystyle{\\simplify{{p}/{q}}}-\\var{r}$ $=$$\\var{r}+b-\\var{r}$
 
$\\displaystyle{\\simplify{{p-r*q}/{q}}}$$=$$b$
 
$b$$=$$\\displaystyle{\\simplify{{p-r*q}/{q}}}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{p-r*q}/{q}", "maxValue": "{p-r*q}/{q}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$.

\n

$w=$ [[0]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Given $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$, we can multiply both sides by $\\var{t}$ to get $\\var{s}w$ by itself and then divide both sides by $\\var{s}$ to get $w$ by itself.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}$$=$$\\var{u}$ 
 
$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}\\times\\var{t}$$=$$\\var{u}\\times\\var{t}$
 
$\\var{s}w$$=$$\\var{u*t}$
 
$\\displaystyle{\\frac{\\var{s}w}{\\var{s}}}$ $=$$\\displaystyle{\\frac{\\var{u*t}}{\\var{s}}}$
 
$w$$=$$\\displaystyle{\\simplify{{u*t}/{s}}}$
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{u*t}/{s}", "maxValue": "{u*t}/{s}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}