// Numbas version: finer_feedback_settings {"name": "Solving linear equations: collecting like terms and solving", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solving linear equations: collecting like terms and solving", "tags": ["algebra", "Algebra", "balancing equations", "collecting like terms", "Linear equations", "linear equations", "rearranging equations", "solving equations", "Solving equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "{q+n*l}/{l*m-p}", "description": "", "templateType": "anything", "can_override": false}, "eans": {"name": "eans", "group": "e", "definition": "denom2*(right*denom1-add)/(denom2+denom1)", "description": "", "templateType": "anything", "can_override": false}, "right": {"name": "right", "group": "e", "definition": "random(-5..5 except 0)", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "top": {"name": "top", "group": "e", "definition": "r12-a2", "description": "", "templateType": "anything", "can_override": false}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "r12": {"name": "r12", "group": "e", "definition": "r1*denom2", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "l": {"name": "l", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "a+random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "{g*f}/{d-g}", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "(k+j)*h", "description": "", "templateType": "anything", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "-b/(a-c)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "denom1": {"name": "denom1", "group": "e", "definition": "primes[0]", "description": "", "templateType": "anything", "can_override": false}, "add": {"name": "add", "group": "e", "definition": "primes[2]", "description": "", "templateType": "anything", "can_override": false}, "denom2": {"name": "denom2", "group": "e", "definition": "primes[1]", "description": "", "templateType": "anything", "can_override": false}, "primes": {"name": "primes", "group": "e", "definition": "shuffle([2,3,5,7,11])", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "random(-12..-1)", "description": "", "templateType": "anything", "can_override": false}, "r1": {"name": "r1", "group": "e", "definition": "right*denom1", "description": "", "templateType": "anything", "can_override": false}, "sumdeno": {"name": "sumdeno", "group": "e", "definition": "denom1+denom2", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "e", "definition": "add*denom2", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(1..12 except h)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..12)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "ans1", "d", "f", "g", "ans2", "h", "j", "k", "ans3", "l", "m", "n", "p", "q", "ans4"], "variable_groups": [{"name": "e", "variables": ["primes", "denom1", "denom2", "add", "right", "eans", "r1", "a2", "r12", "top", "sumdeno"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
We can solve $\\var{a}x+\\var{b}=\\var{c}x$ by collecting like terms and rearranging for $x$.
\nThis gives $x=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\var{a}x+\\var{b}=\\var{c}x$, we can subtract $\\var{a}x$ from both sides to collect like terms, and then divide both sides by the coefficient of $x$ to get $x$ by itself.
\n\n| $\\var{a}x+\\var{b}$ | \n$=$ | \n$\\var{c}x$ | \n
| \n | \n | \n |
| $\\var{a}x+\\var{b}-\\var{a}x$ | \n$=$ | \n$\\var{c}x-\\var{a}x$ | \n
| \n | \n | \n |
| $\\var{b}$ | \n$=$ | \n$\\var{c-a}x$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{b}}{\\var{c-a}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{c-a}x}{\\var{c-a}}}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\simplify{{b}/{c-a}}}$ | \n$=$ | \n$x$ | \n
| \n | \n | \n |
| $x$ | \n$=$ | \n$\\displaystyle{\\simplify{{b}/{c-a}}}$ | \n
There is often more than one way to solve an equation, one strategy used above in the first step was to get all the $x\\text{'s}$ one the side with the most $x\\text{'s}$, that way you end up with a positive number of $x\\text{'s}$. This is not necessary, we could have put all the $x$'s on the left-hand side but notice in this question that we then would have had to move the $\\var{b}$ onto the right-hand side, so it would have required more work, but nevertheless that method would result in the same result for $x$.
"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{-b}/{a-c}", "maxValue": "{-b}/{a-c}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Solve $\\var{l}(\\var{m}w-\\var{n})=\\var{p}w+\\var{q}$ for $w$.
\n$w=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\var{l}(\\var{m}w-\\var{n})=\\var{p}w+\\var{q}$, we can expand the brackets, get all the $w\\text{'s}$ on the left-hand side, collect like terms, get all the numbers on the right-hand side, collect like terms and then divide both sides by the coefficient of $w$ to get $w$ by itself.
\n\n| $\\var{l}(\\var{m}w-\\var{n})$ | \n$=$ | \n$\\var{p}w+\\var{q}$ | \n
| \n | \n | \n |
| $\\var{l*m}w-\\var{n*l}$ | \n$=$ | \n$\\var{p}w+\\var{q}$ | \n
| \n | \n | \n |
| $\\var{l*m}w-\\var{n*l}-\\var{p}w$ | \n$=$ | \n$\\var{p}w+\\var{q}-\\var{p}w$ | \n
| \n | \n | \n |
| $\\var{l*m-p}w-\\var{n*l}$ | \n$=$ | \n$\\var{q}$ | \n
| \n | \n | \n |
| $\\var{l*m-p}w-\\var{n*l}+\\var{n*l}$ | \n$=$ | \n$\\var{q}+\\var{n*l}$ | \n
| \n | \n | \n |
| $\\var{l*m-p}w$ | \n$=$ | \n$\\var{q+n*l}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{l*m-p}w}{\\var{l*m-p}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q+n*l}}{\\var{l*m-p}}}$ | \n
| \n | \n | \n |
| $w$ | \n$=$ | \n$\\displaystyle{\\simplify{{q+n*l}/{l*m-p}}}$ | \n
Given $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$, $y=$ [[0]].
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}=\\var{g}$, we can multiply both sides by $(y-\\var{f})$ to get rid of the fraction, get all the $y\\text{'s}$ on one side and the numbers on the other side, and then divide both sides by the coefficient of $y$ to get $y$ by itself.
\n\n| $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}$ | \n$=$ | \n$\\var{g}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{d}y}{y-\\var{f}}}\\times(y-\\var{f})$ | \n$=$ | \n$\\var{g}\\times (y-\\var{f})$ | \n
| \n | \n | \n |
| $\\var{d}y$ | \n$=$ | \n$\\var{g}y+\\var{-g*f}$ | \n
| \n | \n | \n |
| $\\var{d}y+\\var{-g}y$ | \n$=$ | \n$\\var{g}y+\\var{-g*f}+\\var{-g}y$ | \n
| \n | \n | \n |
| $\\var{d-g}y$ | \n$=$ | \n$\\var{-g*f}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{d-g}y}{\\var{d-g}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{-g*f}}{\\var{d-g}}}$ | \n
| \n | \n | \n |
| $y$ | \n$=$ | \n$\\displaystyle{\\simplify{{-g*f}/{d-g}}}$ | \n
Solve $\\displaystyle{\\frac{z+\\var{h}}{z+\\var{j}}}=\\var{k}$ for $z$.
\n$z=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{z+\\var{h}}{z+\\var{j}}}=\\var{k}$, we can multiply both sides by $(z+\\var{j})$ to get rid of the fraction, get all the $z\\text{'s}$ on one side and the numbers on the other side, and then divide both sides by the coefficient of $z$ to get $z$ by itself.
\n\n| $\\displaystyle{\\frac{z+\\var{h}}{z+\\var{j}}}$ | \n$=$ | \n$\\var{k}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{z+\\var{h}}{z+\\var{j}}}\\times(z+\\var{j})$ | \n$=$ | \n$\\var{k}\\times (z+\\var{j})$ | \n
| \n | \n | \n |
| $z+\\var{h}$ | \n$=$ | \n$\\var{k}z+\\var{k*j}$ | \n
| \n | \n | \n |
| $z+\\var{h}-\\var{k}z$ | \n$=$ | \n$\\var{k}z+\\var{k*j}-\\var{k}z$ | \n
| \n | \n | \n |
| $\\var{1-k}z+\\var{h}$ | \n$=$ | \n$\\var{k*j}$ | \n
| \n | \n | \n |
| $\\var{1-k}z+\\var{h}-\\var{h}$ | \n$=$ | \n$\\var{k*j}-\\var{h}$ | \n
| \n | \n | \n |
| $\\var{1-k}z$ | \n$=$ | \n$\\var{k*j-h}$ | \n
| \n | \n | \n |
| $\\displaystyle{\\frac{\\var{1-k}z}{\\var{1-k}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{k*j-h}}{\\var{1-k}}}$ | \n
| \n | \n | \n |
| $z$ | \n$=$ | \n$\\displaystyle{\\simplify{({k*j-h})/({1-k})}}$ | \n
Solve $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$.
\n$x=$ [[0]]
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}=\\var{right}}$, we can multiply both sides by $\\var{denom1}$ and by $\\var{denom2}$ to get rid of the fractions, get all the $x\\text{'s}$ on one side and the numbers on the other side, and then divide both sides by the coefficient of $x$ to get $x$ by itself.
\n\n| $\\displaystyle{\\frac{x+\\var{add}}{\\var{denom1}}+\\frac{x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{right}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{\\left(\\frac{x+\\var{add}}{\\var{denom1}}\\right)\\times\\var{denom1}+\\left(\\frac{x}{\\var{denom2}}\\right)\\times\\var{denom1}}$ | \n$=$ | \n$\\var{right}\\times \\var{denom1}$ | \n(multiply all terms by $\\var{denom1}$) | \n
| \n | \n | \n | \n |
| $\\displaystyle{x+\\var{add}+\\frac{\\var{denom1}x}{\\var{denom2}}}$ | \n$=$ | \n$\\var{r1}$ | \n\n |
| \n | \n | \n | \n |
| $\\displaystyle{(x+\\var{add})\\times\\var{denom2}+\\left(\\frac{\\var{denom1}x}{\\var{denom2}}\\right)\\times\\var{denom2}}$ | \n$=$ | \n$\\var{r1}\\times\\var{denom2}$ | \n(multiply all terms by $\\var{denom2}$) | \n
| \n | \n | \n | \n |
| $\\displaystyle{\\var{denom2}x+\\var{a2}+\\var{denom1}x}$ | \n$=$ | \n$\\var{r12}$ | \n\n |
| \n | \n | \n | \n |
| $\\var{sumdeno}x+\\var{a2}$ | \n$=$ | \n$\\var{r12}$ | \n(collect like terms) | \n
| \n | \n | \n | \n |
| $\\var{sumdeno}x$ | \n$=$ | \n$\\var{r12}-\\var{a2}$ | \n(collect like terms) | \n
| \n | \n | \n | \n |
| $\\var{sumdeno}x$ | \n$=$ | \n$\\var{top}$ | \n\n |
| \n | \n | \n | \n |
| $x$ | \n$=$ | \n$\\displaystyle{\\simplify{{top}/({sumdeno})}}$ | \n(divide by the coefficient of $x$) | \n