// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 3.0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Combining algebraic fractions 3.0", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions"], "advice": "
The formula for adding these expressions is:
\n\\[\\simplify[std]{a + (c / d) = (ad + c) / d}\\]
\nand for this exercise we have $\\simplify{a={b1}}$, $\\simplify{c={c}x+{b2}}$, $\\simplify{d={a2}x+{d}}$.
\nHence we have:
\\[\\begin{eqnarray*} \\simplify[std]{{b1} } +\\simplify[std]{ ({c}x+{b2}) / ({a2}x + {d})} &=& \\simplify[basic,unitFactor]{(({b1}) * ({a2}*x + {d}) + ({c}x+{b2}) ) / ( ({a2}*x + {d}))}\\\\ &=&\\simplify[std]{ (({b1*a2}x+{b1*d})+{c}x+{b2}) / ( ({a2}*x + {d}))}\\\\&=&\\simplify[std]{ ( {b1*a2+ c }x+{b1*d+b2}) / (({a2}*x + {d}))}\\end{eqnarray*}\\]
Express \\[\\simplify[std]{{a}x+{b1} } +\\simplify[std]{ ({c}x+{b2}) / ({a2}x + {d})}\\] as a single fraction.
\nInput the fraction here: [[0]].
\nClick on Show steps to get more information. You will lose one mark if you do so.
\n\n \n ", "gaps": [{"notallowed": {"message": "
Input as a single fraction.
", "showstrings": false, "strings": [")+", ")-", "-(", "+("], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "( {c+b1*a2} * x + {b1 * d + b2 })/ ( ({a2}*x + {d}))", "type": "jme"}], "steps": [{"prompt": "\nNote that:
\\[\\simplify[std]{a + (c / d) = (ad + c) / d}\\]
\n \n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n
Express the following as a single fraction.
\n\n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": 0.0, "name": "a"}, "c": {"definition": "random(1..9 except a)", "name": "c"}, "d": {"definition": "random(-9..9 except [0,round(b2*a2/c)])", "name": "d"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1"}, "a2": {"definition": 1.0, "name": "a2"}, "b1": {"definition": "random(-5..5 except 0)", "name": "b1"}, "b2": {"definition": "random(-5..5 except 0)", "name": "b2"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb"}}, "metadata": {"notes": "
18/08/2012:
\nAdded tags.
\nAdded description.
\nModified copy of Combining algebraic fractions 3.
\nChecked calculations.OK.
\n29/01/2013:
\nEdited advice so that simplification steps were correct in the solution.
\n\n
", "description": "
Express $\\displaystyle b+ \\frac{dx+p}{x + q}$ as an algebraic single fraction.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}