// Numbas version: finer_feedback_settings {"name": "Expanding a binomial product (monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Expanding a binomial product (monic factors)", "tags": ["binomial", "Binomial", "binomial product", "distributive law", "expanding", "Expanding", "factorisation", "Factorisation", "factors", "Factors", "monic", "quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Expand and simplify the following.

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..4]", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..4]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "[1,1,1,1]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "[1,1,1,1]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "127"}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{(x+{a[0]})(x+{b[0]})}$ = [[0]]

\n

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify[basic]{(x+{a[0]})(x+{b[0]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x+{b[0]})+{a[0]}(x+{b[0]})}$

\n

Then we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2+{b[0]}x+{a[0]}x+{a[0]*b[0]}}$

\n

And collect like terms: $\\simplify[basic, unitfactor]{x^2+{a[0]+b[0]}x+{a[0]*b[0]}}$

\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{b[0]}x$, then the Inner terms to get $\\var{a[0]}x$, and then the Last terms to get $\\var{a[0]*b[0]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2+{a[0]+b[0]}x+{a[0]*b[0]}}$

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2+{a[0]+b[0]}x+{a[0]*b[0]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{(x+{a[1]})(x+{b[1]})}$ = [[0]]

\n

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify[basic]{(x+{a[1]})(x+{b[1]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{x(x+{b[1]})+{a[1]}(x+{b[1]})}$

\n

Then we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{x^2+{b[1]}x+{a[1]}x+{a[1]*b[1]}}$

\n

And collect like terms: $\\simplify[basic, unitfactor]{x^2+{a[1]+b[1]}x+{a[1]*b[1]}}$

\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket to get $x^2$, then the Outer terms to get $\\var{b[1]}x$, then the Inner terms to get $\\var{a[1]}x$, and then the Last terms to get $\\var{a[1]*b[1]}$. Now add them all together: $\\simplify[basic, unitfactor]{x^2+{a[1]+b[1]}x+{a[1]*b[1]}}$

\n



"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2+{a[1]+b[1]}x+{a[1]*b[1]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{(m+{a[2]})(m+{b[2]})}$ = [[0]]

\n

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify[basic]{(m+{a[2]})(m+{b[2]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{m(m+{b[2]})+{a[2]}(m+{b[2]})}$

\n

Then we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{m^2+{b[2]}m+{a[2]}m+{a[2]*b[2]}}$

\n

And collect like terms: $\\simplify[basic, unitfactor]{m^2+{a[2]+b[2]}m+{a[2]*b[2]}}$

\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket to get $m^2$, then the Outer terms to get $\\var{b[2]}m$, then the Inner terms to get $\\var{a[2]}m$, and then the Last terms to get $\\var{a[2]*b[2]}$. Now add them all together: $\\simplify[basic, unitfactor]{m^2+{a[2]+b[2]}m+{a[2]*b[2]}}$

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "m^2+{a[2]+b[2]}m+{a[2]*b[2]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "m", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\simplify{(t+{a[3]})(t+{b[3]})}$ = [[0]]

\n

\n

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Method 1 (the distributive law)

\n

We expand $\\simplify[basic]{(t+{a[3]})(t+{b[3]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{t(t+{b[3]})+{a[3]}(t+{b[3]})}$

\n

Then we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{t^2+{b[3]}t+{a[3]}t+{a[3]*b[3]}}$

\n

And collect like terms: $\\simplify[basic, unitfactor]{t^2+{a[3]+b[3]}t+{a[3]*b[3]}}$

\n

Method 2 (FOIL)

\n

Multiply the First terms in each bracket to get $t^2$, then the Outer terms to get $\\var{b[3]}t$, then the Inner terms to get $\\var{a[3]}t$, and then the Last terms to get $\\var{a[3]*b[3]}$. Now add them all together: $\\simplify[basic, unitfactor]{t^2+{a[3]+b[3]}t+{a[3]*b[3]}}$

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "t^2+{a[3]+b[3]}t+{a[3]*b[3]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "

Ensure you don't use brackets in your answer.

"}, "mustmatchpattern": {"pattern": "$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "t", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}