// Numbas version: finer_feedback_settings {"name": "Expanding a binomial product (non-monic factors)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Expanding a binomial product (non-monic factors)", "tags": ["binomial", "Binomial", "binomial product", "distributive law", "expanding", "Expanding", "factorisation", "Factorisation", "factors", "Factors", "non-monic", "quadratic"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "
Expand and simplify the following.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except [0,1])[0..2]", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..2]", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except [0,1])[0..2]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "127"}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[basic]{({c[0]}x+{a[0]})({d[0]}x+{b[0]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{({c[0]}x+{a[0]})({d[0]}x+{b[0]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{{c[0]}x({d[0]}x+{b[0]})+{a[0]}({d[0]}x+{b[0]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{{c[0]*d[0]}x^2+{c[0]*b[0]}x+{d[0]*a[0]}x+{a[0]*b[0]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $\\var{c[0]*d[0]}x^2$, then the Outer terms to get $\\var{c[0]*b[0]}x$, then the Inner terms to get $\\var{d[0]*a[0]}x$, and then the Last terms to get $\\var{a[0]*b[0]}$. Now add them all together: $\\simplify[basic, unitfactor]{{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c[0]*d[0]}x^2+{d[0]*a[0]+c[0]*b[0]}x+{a[0]*b[0]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "`+-$n*$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[basic]{({c[1]}x+{a[1]})({d[1]}x+{b[1]})}$ = [[0]]
\n\n", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify[basic]{({c[1]}x+{a[1]})({d[1]}x+{b[1]})}$ one bracket at a time. Each term in the first bracket times the entire other bracket: $\\simplify[basic]{{c[1]}x({d[1]}x+{b[1]})+{a[1]}({d[1]}x+{b[1]})}$
\nThen we use the distributive law on each bracket: $\\simplify[basic, !collectnumbers]{{c[1]*d[1]}x^2+{c[1]*b[1]}x+{d[1]*a[1]}x+{a[1]*b[1]}}$
\nAnd collect like terms: $\\simplify[basic, unitfactor]{{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}}$
\nMethod 2 (FOIL)
\nMultiply the First terms in each bracket to get $\\var{c[1]*d[1]}x^2$, then the Outer terms to get $\\var{c[1]*b[1]}x$, then the Inner terms to get $\\var{d[1]*a[1]}x$, and then the Last terms to get $\\var{a[1]*b[1]}$. Now add them all together: $\\simplify[basic, unitfactor]{{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}}$
"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c[1]*d[1]}x^2+{d[1]*a[1]+c[1]*b[1]}x+{a[1]*b[1]}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["(", ")"], "showStrings": false, "partialCredit": 0, "message": "Ensure you don't use brackets in your answer.
"}, "mustmatchpattern": {"pattern": "`+-$n*$v^2+`+-$n*$v+`+-$n", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}