// Numbas version: finer_feedback_settings {"name": "Ugur's copy of Using the Logarithm Equivalence $\\log_ba=c \\Longleftrightarrow a=b^c$", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Ugur's copy of Using the Logarithm Equivalence $\\log_ba=c \\Longleftrightarrow a=b^c$", "tags": [], "metadata": {"description": "
Rearrange some expressions involving logarithms by applying the relation $\\log_b(a) = c \\iff a = b^c$.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "i)
\nWe can rearrange logarithms using indices.
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nUsing this equivalence we can rewrite $\\log_\\var{f}x=\\var{f1}$.
\n\\[\\begin{align}
x&= \\var{f}^\\var{f1} \\\\
&=\\var{f^f1}
\\end{align}\\]
\n
i)
\nWe can use the equivalence to rewrite our equation.
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nWe can write out our values to makes it easier.
\n\\[\\begin{align}
a&=x \\\\
b&=\\var{g1}\\\\
c&=y+\\var{g2}
\\end{align}\\]
Then we can write out our equation in the required form.
\n\\[x=\\var{g1}^{y+\\var{g2}}\\]
\n\n
We can use the same equivalence as in part b).
\n\\[\\log_ba=c \\Longleftrightarrow a=b^c\\]
\nWe have
\n\\begin{align}
a&=y+\\var{h1} \\\\
b&=x\\\\
c&=\\var{h2}\\text{.} \\\\ \\\\
\\log_{x}(y+\\var{h1}) &= \\var{h2} \\\\
\\implies y+\\var{h1} &= x^{\\var{h2}} \\\\
x &= (y+\\var{h1})^{\\frac{1}{\\var{h2}}}
\\end{align}
The two in this list that don't equal $x$ are $\\log_e(x)$ and $\\log_{10}(x)$.
\n\\[\\begin{align}
\\log_e(x)&=\\ln(x)\\\\
\\log_{10}(x)&=\\log(x)\\text{.}
\\end{align}\\]
Rearrange the equation to find $x$.
\n$\\log_\\var{f}(x)=\\var{f1}$
\n$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{f^f1}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Make $x$ the subject of the following equation.
\n$\\log_\\var{g1}(x)=y+\\var{g2}$
\n$x=$ [[0]]
Make $x$ the subject of the equation, leaving your answer in the form $a^{\\frac{1}{b}}$.
\n$\\log_x(y+\\var{h1})=\\var{h2}$
\n$x=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(y+{h1})^(1/{h2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "y", "value": ""}]}], "sortAnswers": false}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Which of the following expressions are equivalent to $x$?
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["$\\log_a(a^x)$
", "$a^{\\log_a(x)}$
", "$e^{\\ln(x)}$
", "$\\log_{10}(x)$
", "$\\log_e(x)$
", "$\\ln(e^x)$
"], "matrix": ["1", "1", "1", "-5", "-5", "1"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14200/"}]}