// Numbas version: finer_feedback_settings {"name": "Quadratic Equations: The Discriminant 01", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Quadratic Equations: The Discriminant 01", "tags": [], "metadata": {"description": "

Calculation of quadratic discriminants.

\n

State nature of roots.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Using the Quadratic Formula, the roots of a quadratic equation  \\(ax^2+ bx +c =0 \\)  are given by:

\n

\\( \\Large x=\\frac{-b \\pm \\sqrt{ \\color{red}{b^2 - 4ac}}}{2a} \\)

\n

The discriminant (\\( \\Delta \\))  is equal to the expression inside the square root (shown in red). It can be used to find the number and nature of the equation's roots.

\n

\\( \\large \\Delta = b^2 - 4ac \\)

\n

 If  \\( \\Delta > 0 \\) (positive) then the quadratic has two distinct, real roots,

\n

 If  \\( \\Delta = 0 \\) then the quadratic has one real, repeated root,

\n

 If  \\( \\Delta < 0 \\) (negative) then the roots are both non-real (complex).

", "advice": "

We are asked to rxamine a variety of quadratic equations, calculate their discriminants and then state the number and nature of their roots,

\n

\n

a)

\n

\\( \\simplify{ x^2 + {b1}x + {c1} } =0 \\)

\n

First identify the co-efficients:    \\( a = \\var{a1} \\),  \\( b = \\var{b1} \\)  and  \\( c= \\var{c1} \\).

\n

We use the formula to calculate the discriminant:

\n

\\( \\Delta = b^2 - 4ac \\)

\n

\\( \\Delta = \\var{b1}^2 - 4 \\times \\var{a1} \\times \\var{c1} \\)

\n

\\( \\Delta = \\var{disc1} \\)

\n

Since the discriminant equals zero, we can state that this equation has a single real, repeated root.

\n

 

\n

 

\n

b)

\n

\\( \\simplify{ x^2 + {b2}x + {c2} } =0 \\)

\n

First identify the co-efficients:    \\( a = \\var{a1} \\),  \\( b = \\var{b2} \\)  and  \\( c= \\var{c2} \\).

\n

We use the formula to calculate the discriminant:

\n

\\( \\Delta = b^2 - 4ac \\)

\n

\\( \\Delta = \\var{b2}^2 - 4 \\times \\var{a1} \\times \\var{c2} \\)

\n

\\( \\Delta = \\var{disc2} \\)

\n

Since the discriminant is positive, we can state that this equation has two distinct, real roots.

\n

\n

 

\n

 

\n

c)

\n

\\( \\simplify{ x^2 + {b3}x + {c3} } =0 \\)

\n

First identify the co-efficients:    \\( a = \\var{a1} \\),  \\( b = \\var{b3} \\)  and  \\( c= \\var{c3} \\).

\n

We use the formula to calculate the discriminant:

\n

\\( \\Delta = b^2 - 4ac \\)

\n

\\( \\Delta = \\var{b3}^2 - 4 \\times \\var{a1} \\times \\var{c3} \\)

\n

\\( \\Delta = \\var{disc3} \\)

\n

Since the discriminant is negative, we can state that this equation has two distinct, non-real (complex) roots.

\n

 

\n

 

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f1": {"name": "f1", "group": "Repeated roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Repeated roots", "definition": "{f1}+{f1}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Repeated roots", "definition": "{f1}*{f1}", "description": "", "templateType": "anything", "can_override": false}, "disc1": {"name": "disc1", "group": "Repeated roots", "definition": "{b1}^2-(4*{a1}*{c1})", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Repeated roots", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Two real roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Two real roots", "definition": "random(-9..9 except -1 except 0 except 1 except {g1})", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Two real roots", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Two real roots", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "disc2": {"name": "disc2", "group": "Two real roots", "definition": "{b2}^2-(4*{a1}*{c2})", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Complex roots", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Complex roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "cr1": {"name": "cr1", "group": "Complex roots", "definition": "{p}+{q}i", "description": "", "templateType": "anything", "can_override": false}, "cr2": {"name": "cr2", "group": "Complex roots", "definition": "{p}-{q}i", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Complex roots", "definition": "{cr1}*{cr2}", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Complex roots", "definition": "{cr1}+{cr2}", "description": "", "templateType": "anything", "can_override": false}, "disc3": {"name": "disc3", "group": "Complex roots", "definition": "{b3}^2-(4*{a1}*{c3})", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Repeated roots", "variables": ["f1", "a1", "b1", "c1", "disc1"]}, {"name": "Two real roots", "variables": ["g1", "g2", "b2", "c2", "disc2"]}, {"name": "Complex roots", "variables": ["p", "q", "cr1", "cr2", "b3", "c3", "disc3"]}, {"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

For the following quadratic equations, calculate their discriminant. Then determine the number and nature of the roots for each:

"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\( \\simplify{ x^2 + {b1}x + {c1} } =0 \\)

\n

The discriminant of this equation:   \\( \\Delta = \\)  [[0]]

\n

This equation has roots that are:

\n

[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc1}", "maxValue": "{disc1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["0", "1", 0], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\( \\simplify{ x^2 + {b2}x + {c2} } =0 \\)

\n

The discriminant of this equation:   \\( \\Delta = \\)  [[0]]

\n

This equation has roots that are:

\n

[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc2}", "maxValue": "{disc2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["1", "0", 0], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\( \\simplify{ x^2 + {b3}x + {c3} } =0 \\)

\n

The discriminant of this equation:   \\( \\Delta = \\)  [[0]]

\n

This equation has roots that are:

\n

[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc3}", "maxValue": "{disc3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["0", "0", "1"], "distractors": ["", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}