// Numbas version: finer_feedback_settings {"name": "Quadratic Equations: The Discriminant 01", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Quadratic Equations: The Discriminant 01", "tags": [], "metadata": {"description": "
Calculation of quadratic discriminants.
\nState nature of roots.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "\\( \\Large x=\\frac{-b \\pm \\sqrt{ \\color{red}{b^2 - 4ac}}}{2a} \\)
\nThe discriminant (\\( \\Delta \\)) is equal to the expression inside the square root (shown in red). It can be used to find the number and nature of the equation's roots.
\n\\( \\large \\Delta = b^2 - 4ac \\)
\nIf \\( \\Delta > 0 \\) (positive) then the quadratic has two distinct, real roots,
\nIf \\( \\Delta = 0 \\) then the quadratic has one real, repeated root,
\nIf \\( \\Delta < 0 \\) (negative) then the roots are both non-real (complex).
", "advice": "We are asked to rxamine a variety of quadratic equations, calculate their discriminants and then state the number and nature of their roots,
\n\na)
\n\\( \\simplify{ x^2 + {b1}x + {c1} } =0 \\)
\nFirst identify the co-efficients: \\( a = \\var{a1} \\), \\( b = \\var{b1} \\) and \\( c= \\var{c1} \\).
\nWe use the formula to calculate the discriminant:
\n\\( \\Delta = b^2 - 4ac \\)
\n\\( \\Delta = \\var{b1}^2 - 4 \\times \\var{a1} \\times \\var{c1} \\)
\n\\( \\Delta = \\var{disc1} \\)
\nSince the discriminant equals zero, we can state that this equation has a single real, repeated root.
\n\n
\n
b)
\n\\( \\simplify{ x^2 + {b2}x + {c2} } =0 \\)
\nFirst identify the co-efficients: \\( a = \\var{a1} \\), \\( b = \\var{b2} \\) and \\( c= \\var{c2} \\).
\nWe use the formula to calculate the discriminant:
\n\\( \\Delta = b^2 - 4ac \\)
\n\\( \\Delta = \\var{b2}^2 - 4 \\times \\var{a1} \\times \\var{c2} \\)
\n\\( \\Delta = \\var{disc2} \\)
\nSince the discriminant is positive, we can state that this equation has two distinct, real roots.
\n\n
\n
\n
c)
\n\\( \\simplify{ x^2 + {b3}x + {c3} } =0 \\)
\nFirst identify the co-efficients: \\( a = \\var{a1} \\), \\( b = \\var{b3} \\) and \\( c= \\var{c3} \\).
\nWe use the formula to calculate the discriminant:
\n\\( \\Delta = b^2 - 4ac \\)
\n\\( \\Delta = \\var{b3}^2 - 4 \\times \\var{a1} \\times \\var{c3} \\)
\n\\( \\Delta = \\var{disc3} \\)
\nSince the discriminant is negative, we can state that this equation has two distinct, non-real (complex) roots.
\n\n
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"f1": {"name": "f1", "group": "Repeated roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Repeated roots", "definition": "{f1}+{f1}", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Repeated roots", "definition": "{f1}*{f1}", "description": "", "templateType": "anything", "can_override": false}, "disc1": {"name": "disc1", "group": "Repeated roots", "definition": "{b1}^2-(4*{a1}*{c1})", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Repeated roots", "definition": "1", "description": "", "templateType": "anything", "can_override": false}, "g1": {"name": "g1", "group": "Two real roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "g2": {"name": "g2", "group": "Two real roots", "definition": "random(-9..9 except -1 except 0 except 1 except {g1})", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Two real roots", "definition": "{g1}+{g2}", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Two real roots", "definition": "{g1}*{g2}", "description": "", "templateType": "anything", "can_override": false}, "disc2": {"name": "disc2", "group": "Two real roots", "definition": "{b2}^2-(4*{a1}*{c2})", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Complex roots", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Complex roots", "definition": "random(-9..9 except -1 except 0 except 1)", "description": "", "templateType": "anything", "can_override": false}, "cr1": {"name": "cr1", "group": "Complex roots", "definition": "{p}+{q}i", "description": "", "templateType": "anything", "can_override": false}, "cr2": {"name": "cr2", "group": "Complex roots", "definition": "{p}-{q}i", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Complex roots", "definition": "{cr1}*{cr2}", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Complex roots", "definition": "{cr1}+{cr2}", "description": "", "templateType": "anything", "can_override": false}, "disc3": {"name": "disc3", "group": "Complex roots", "definition": "{b3}^2-(4*{a1}*{c3})", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Repeated roots", "variables": ["f1", "a1", "b1", "c1", "disc1"]}, {"name": "Two real roots", "variables": ["g1", "g2", "b2", "c2", "disc2"]}, {"name": "Complex roots", "variables": ["p", "q", "cr1", "cr2", "b3", "c3", "disc3"]}, {"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
For the following quadratic equations, calculate their discriminant. Then determine the number and nature of the roots for each:
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b1}x + {c1} } =0 \\)
\nThe discriminant of this equation: \\( \\Delta = \\) [[0]]
\nThis equation has roots that are:
\n[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc1}", "maxValue": "{disc1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["0", "1", 0], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b2}x + {c2} } =0 \\)
\nThe discriminant of this equation: \\( \\Delta = \\) [[0]]
\nThis equation has roots that are:
\n[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc2}", "maxValue": "{disc2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["1", "0", 0], "distractors": ["", "", ""]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ x^2 + {b3}x + {c3} } =0 \\)
\nThe discriminant of this equation: \\( \\Delta = \\) [[0]]
\nThis equation has roots that are:
\n[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{disc3}", "maxValue": "{disc3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Two distinct, real roots", "A single real, repeated root", "Two distinct, non-real (complex) roots"], "matrix": ["0", "0", "1"], "distractors": ["", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}]}