// Numbas version: finer_feedback_settings {"name": "Equations du second degr\u00e9 : 01 - R\u00e9solution \u00e0 l'aide des formules.", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Equations du second degr\u00e9 : 01 - R\u00e9solution \u00e0 l'aide des formules.", "tags": [], "metadata": {"description": "
Résoudre des équations du second degré à une inconnue (cas d'un discriminant > 0, deux racines entières réelles et discrètes) à l'aide des formules.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Méthode générale de résolution des équations du second degré
Soit l'équation du second degré : \\(\\color{red}{a x^{2} + b x + c = 0}\\) (a, b et c \\(\\in \\mathbb{R}\\), a \\(\\neq\\) 0).
Son discriminant ($\\Delta$ = delta) est : $\\color{red}{\\Delta=b^{2}-4 a c}$
\nNota : On les appelles parfois formules de Shreedhara Acharya (mathématicien indien du X$^{\\text {ème }}$siècle).
\nOn nous demande de trouver les racines de diverses équations du second degré en utilisant les formules. Pour nous permettre de le faire, on nous demande à chaque fois de commencer par identifier les coefficients \\( a \\), \\( b \\) et \\( c \\).
\n\na)
\n\\( \\simplify{ {a1}x^2 + {b1}x + {c1} } =0 \\)
\nLes coefficients de cette équation peuvent être simplement lus à partir de l'équation, en prenant soin de tenir compte des valeurs positives et négatives :
\n\\( a = \\) \\( \\var{a1}\\) \\( b = \\) \\( \\var{b1}\\) et \\( c = \\) \\( \\var{c1}\\)
\n$\\color{red}{\\Delta=b^{2}-4 a c}$ devient $\\Delta=(\\var{b1})^2 -4 \\times (\\var{a1}) \\times (\\var{c1}) = \\var{d1}$
\n$\\color{red}{x_{1}=\\frac{-b-\\sqrt{\\Delta}}{2 a}}$ devient $x_{1}=\\frac{-(\\var{b1}) - \\sqrt{\\var{d1}}}{2 \\times (\\var{a1})}=\\var{x1}$
\n$\\color{red}{x_{2}=\\frac{-b+\\sqrt{\\Delta}}{2 a}}$ devient $x_{2}=\\frac{-(\\var{b1}) + \\sqrt{\\var{d1}}}{2 \\times (\\var{a1})}=\\var{x2}$
\n\nb)
\n\\( \\simplify{ {a2}x^2 + {b2}x + {c2} } =0 \\)
\nLes coefficients de cette équation peuvent être simplement lus à partir de l'équation, en prenant soin de tenir compte des valeurs positives et négatives :
\n\\( a = \\) \\( \\var{a2}\\) \\( b = \\) \\( \\var{b2}\\) et \\( c = \\) \\( \\var{c2}\\)
\n$\\color{red}{\\Delta=b^{2}-4 a c}$ devient $\\Delta=(\\var{b2})^2 -4 \\times (\\var{a2}) \\times (\\var{c2}) = \\var{d2}$
\n$\\color{red}{x_{1}=\\frac{-b-\\sqrt{\\Delta}}{2 a}}$ devient $x_{1}=\\frac{-(\\var{b2}) - \\sqrt{\\var{d2}}}{2 \\times (\\var{a2})}=\\var{y1}$
\n$\\color{red}{x_{2}=\\frac{-b+\\sqrt{\\Delta}}{2 a}}$ devient $x_{2}=\\frac{-(\\var{b2}) + \\sqrt{\\var{d2}}}{2 \\times (\\var{a2})}=\\var{y2}$
\n\nc)
\n\\( \\simplify{ {a3}x^2 + {b3}x + {c3} } =0 \\)
\nLes coefficients de cette équation peuvent être simplement lus à partir de l'équation, en prenant soin de tenir compte des valeurs positives et négatives :
\n\\( a = \\) \\( \\var{a3}\\) \\( b = \\) \\( \\var{b3}\\) et \\( c = \\) \\( \\var{c3}\\)
\n$\\color{red}{\\Delta=b^{2}-4 a c}$ devient $\\Delta=(\\var{b3})^2 -4 \\times (\\var{a3}) \\times (\\var{c3}) = \\var{d3}$
\n$\\color{red}{x_{1}=\\frac{-b-\\sqrt{\\Delta}}{2 a}}$ devient $x_{1}=\\frac{-(\\var{b3}) - \\sqrt{\\var{d3}}}{2 \\times (\\var{a3})}=\\var{z1}$
\n$\\color{red}{x_{2}=\\frac{-b+\\sqrt{\\Delta}}{2 a}}$ devient $x_{2}=\\frac{-(\\var{b3}) + \\sqrt{\\var{d3}}}{2 \\times (\\var{a3})}=\\var{z2}$
\n\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Question A", "definition": "random(2..9)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Question A", "definition": "random(-9..9 except 0 except 1 except {a1})", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Question A", "definition": "random(-9..9 except 0 except 1 except {a1} except {x1})", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Question A", "definition": "-{a1}*({x1}+{x2})", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Question A", "definition": "{a1}*{x1}*{x2}", "description": "", "templateType": "anything", "can_override": false}, "plus": {"name": "plus", "group": "Trial check", "definition": "(-{b1}+sqrt({b1}^2-4*{a1}*{c1}))/(2*{a1})", "description": "", "templateType": "anything", "can_override": false}, "minus": {"name": "minus", "group": "Trial check", "definition": "(-{b1}-sqrt({b1}^2-4*{a1}*{c1}))/(2*{a1})", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Question B", "definition": "random(2..9 except {a1})", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Question B", "definition": "random(-9..9 except 0 except 1 except {a2})", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Question B", "definition": "random(-9..9 except 0 except 1 except {a2} except {y1})", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Question B", "definition": "-{a2}*({y1}+{y2})", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Question B", "definition": "{a2}*{y1}*{y2}", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Question C", "definition": "random(2..9 except {a1} except {a2})", "description": "", "templateType": "anything", "can_override": false}, "z1": {"name": "z1", "group": "Question C", "definition": "random(-9..9 except 0 except 1 except {a3})", "description": "", "templateType": "anything", "can_override": false}, "z2": {"name": "z2", "group": "Question C", "definition": "random(-9..9 except 0 except 1 except {a3} except {z1})", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Question C", "definition": "-{a3}*({z1}+{z2})", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Question C", "definition": "{a3}*{z1}*{z2}", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Question A", "definition": "{b1}^2-4*{a1}*{c1}", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Question B", "definition": "{b2}^2-4*{a2}*{c2}", "description": "", "templateType": "anything", "can_override": false}, "d3": {"name": "d3", "group": "Question C", "definition": "{b3}^2-4*{a3}*{c3}", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Trial check", "variables": ["minus", "plus"]}, {"name": "Question A", "variables": ["x1", "x2", "a1", "b1", "c1", "d1"]}, {"name": "Question B", "variables": ["y1", "y2", "a2", "b2", "c2", "d2"]}, {"name": "Question C", "variables": ["z1", "z2", "a3", "b3", "c3", "d3"]}, {"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Pour les équations suivantes, identifiez d'abord les coefficients, puis utilisez les formules pour calculer les racines :
"}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ {a1}x^2 + {b1}x + {c1} } =0 \\)
\nLes coefficients de cette équation sont :
\n\\( a = \\) [[0]] \\( b = \\) [[1]] et \\( c = \\) [[2]]
\nUtilisez la formule pour trouver le discriminant : $\\Delta=$ [[5]]
\nUtilisez maintenant les formules pour trouver les racines :
\n\\( x_1 = \\) [[3]]
\n\\( x_2 = \\) [[4]]
\n(Si vous êtes sûr que vos racines sont correctes mais qu'elles sont mal marquées, inversez-les).
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a1}", "maxValue": "{a1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b1}", "maxValue": "{b1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{c1}", "maxValue": "{c1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x1}", "maxValue": "{x1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{x2}", "maxValue": "{x2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{d1}", "maxValue": "{d1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ {a2}x^2 + {b2}x + {c2} } =0 \\)
\nLes coefficients de cette équation sont :
\n\\( a = \\) [[0]] \\( b = \\) [[1]] et \\( c = \\) [[2]]
\nUtilisez la formule pour trouver le discriminant : $\\Delta=$ [[5]]
\nUtilisez maintenant les formules pour trouver les racines :
\n\\( x_1 = \\) [[3]]
\n\\( x_2 = \\) [[4]]
\n(Si vous êtes sûr que vos racines sont correctes mais qu'elles sont mal marquées, inversez-les).
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a2}", "maxValue": "{a2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b2}", "maxValue": "{b2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{c2}", "maxValue": "{c2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{y1}", "maxValue": "{y1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{y2}", "maxValue": "{y2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{d2}", "maxValue": "{d2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\\( \\simplify{ {a3}x^2 + {b3}x + {c3} } =0 \\)
\nLes coefficients de cette équation sont :
\n\\( a = \\) [[0]] \\( b = \\) [[1]] et \\( c = \\) [[2]]
\nUtilisez la formule pour trouver le discriminant : $\\Delta=$ [[5]]
\nUtilisez maintenant les formules pour trouver les racines :
\n\\( x_1 = \\) [[3]]
\n\\( x_2 = \\) [[4]]
\n(Si vous êtes sûr que vos racines sont correctes mais qu'elles sont mal marquées, inversez-les).
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{a3}", "maxValue": "{a3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b3}", "maxValue": "{b3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{c3}", "maxValue": "{c3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{z1}", "maxValue": "{z1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{z2}", "maxValue": "{z2}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{d3}", "maxValue": "{d3}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "si-en", "si-fr", "plain-eu"], "correctAnswerStyle": "si-fr"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "STEPHAN GRIGNON", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14984/"}], "resources": []}]}], "contributors": [{"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "STEPHAN GRIGNON", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14984/"}]}