// Numbas version: finer_feedback_settings {"name": "CF Maths In class test three question 8 Integration by partial fractions with limits", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "b1", "d1"], "name": "CF Maths In class test three question 8 Integration by partial fractions with limits", "tags": ["2 distinct linear factors", "Calculus", "calculus", "compare coefficients", "identify coefficients", "integrals", "integration", "logarithms", "partial fractions", "steps", "Steps", "two distinct linear factors"], "advice": "
Using partial fractions we have to find $A$ and $B$ such that:
\\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b}))}\\;= \\simplify[std]{A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}*x+{d}} \\Rightarrow \\simplify[std]{(A+B)*x+{b}*A+{a}*B={c}*x+{d}}$
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$
\nCoefficent $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$
\nOn solving these equations we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$
\nWhich gives: \\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b}))}\\; =\\simplify[std]{ ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*(Int(1/(x+{a}),x)) +({d-b*c}/{a-b})Int(1/(x+{b}),x)}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})} \\end{eqnarray*}\\]
\n\nFor the last step substitute the upper limt and lower limit separately to the integral, and the value from upper limt take away from the lower one to give the final answer.
\n\\[\\simplify[std]{({d-a*c}/{b-a})*ln(12+{a})+({d-b*c}/{a-b})*ln(12+{b})} \\] take away \\[\\simplify[std]{({d-a*c}/{b-a})*ln(10+{a})+({d-b*c}/{a-b})*ln(10+{b})} \\]
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "First, input the sum of partial fraction
\n[[0]]
\n\nSecond, input the integral without the limit
\n$I=\\;$[[1]]
\nInput all numbers as fractions or integers and not decimals.
\nDo not need to input $C$, the constant of integration.
\n\nThe last, substitute the limits to the integral and calculate it.
\n[[2]], accurate to 2 decimal places.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "({d-a*c}/(({b-a})*(x+{a})))+({d-b*c}/(({a-b})*(x+{b})))", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}, {"notallowed": {"message": "Input all numbers as fractions or integers and not decimals.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "variableReplacements": [], "expectedvariablenames": [], "checkingaccuracy": 0.0001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})", "marks": 3, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [11, 12]}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "2", "maxValue": "(({d-a*c}/{b-a})*ln(12+{a})+({d-b*c}/{a-b})*ln(12+{b}))-(({d-a*c}/{b-a})*ln(10+{a})+({d-b*c}/{a-b})*ln(10+{b}))", "minValue": "(({d-a*c}/{b-a})*ln(12+{a})+({d-b*c}/{a-b})*ln(12+{b}))-(({d-a*c}/{b-a})*ln(10+{a})+({d-b*c}/{a-b})*ln(10+{b}))", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Find the following integral.
\n\\[I = \\simplify[std]{defint(({c}*x+{d})/((x +{a})*(x+{b})),x,10,12 )}\\]
\nInput all numbers as fractions or integers and not decimals.
\n", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "s1*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "if(b1=a,b1+s3,b1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "s3": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s3", "description": ""}, "s2": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "random(1,-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "b1": {"definition": "s2*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "b1", "description": ""}, "d1": {"definition": "s3*random(1..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t5/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tAdded decimal point as forbidden string.
\n \t\t \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\t \t\tImproved display of Advice.
\n \t\t \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\t \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t \n \t\t", "description": "Find $\\displaystyle\\int \\frac{ax+b}{(x+c)(x+d)}\\;dx,\\;a\\neq 0,\\;c \\neq d $.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}