// Numbas version: finer_feedback_settings {"name": "Geometric series 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["t1", "tr", "tsum", "td"], "name": "Geometric series 2", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

Part a)

\n

To find the $i^{th}$ term for a specific $i$ (in this case $\\var{tr}$) we need to recall the following formulae:

\n

$\\displaystyle\\sum\\limits_{i=1}^nar^{i-1}$ $_{..(I)}$

\n

$a_i=ar^{i-1}$ $_{..(II)}$

\n

$a$ is the first term in the sequence. Namely, $\\var{t1}$.

\n

To find the common ratio, $r$, simply divide one term by its predecessor.

\n

The known values for $a$, $r$ and $i$ are then subsituted into $_{(II)}$.

\n

Part b)

\n

To find the general $i^{th}$ term, $a_i$, formula of a geometric series, we substitute known values of $a$ and $r$ into $_{(II)}$ to produce the formula in $i$.

\n

In this case,

\n

$a_i=\\var{t1}(\\simplify{-1/{td}})^{i-1}$

\n

Part c)

\n

To find the sum of the first $n$ (in this case $\\var{tsum}$) terms of a geometric series, we turn to the following formula:

\n

$\\displaystyle\\sum\\limits_{i=1}^nar^{i-1}=a\\left(\\frac{1-r^n}{1-r}\\right)$ $_{..(III)}$

\n

The sum is found by subsituting the known values for $a$, $r$ and $n$ into $_{(III)}$.

\n

Part d)

\n

The sum to infinity of a geometric series can be found by first taking the usual sum from $_{(III)}$ and setting $n$ to $\\infty$:

\n

$\\displaystyle\\sum\\limits_{i=1}^{\\infty}ar^{i-1}=a\\left(\\frac{1-r^\\infty}{1-r}\\right)$ $_{..(III)}$

\n

When $\\left|r\\right|<0$, note that $r^\\infty$ tends to $0$. The above formula simplifies:

\n

$a\\left(\\frac{1-0}{1-r}\\right)=a\\left(\\frac{1}{1-r}\\right)=\\left(\\frac{a}{1-r}\\right)$

\n

$\\therefore\\;\\;\\;\\displaystyle\\sum\\limits_{i=1}^{\\infty}ar^{i-1}=\\left(\\frac{a}{1-r}\\right)$ $_{..(IV)}$

\n

The final sum is calculated by substituting the values for $a$ and $r$ into $_{(IV)}$.

", "rulesets": {}, "parts": [{"precisionType": "sigfig", "prompt": "

Find the $\\var{tr}$th term. Give your answer accurate to 3 significant figures.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "(-1)^({tr}-1){t1}/(({td})^({tr}-1))", "strictPrecision": true, "minValue": "(-1)^({tr}-1){t1}/(({td})^({tr}-1))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"vsetrangepoints": 5, "prompt": "

Find the $i^{th}$ term

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "!basic", "scripts": {}, "answer": "{t1}*(-1/{td})^(i-1)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"precisionType": "dp", "prompt": "

Find the sum of the first $\\var{tsum}$ terms. Give your answer accurate to 2 decimal places.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{t1}(1-(-1/{td})^{tsum})/(1+(1/{td}))", "strictPrecision": true, "minValue": "{t1}(1-(-1/{td})^{tsum})/(1+(1/{td}))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

Find the sum to infinity of the series. Give your answer accurate to 2 decimal places.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{t1}/(1-(-1/{td}))", "strictPrecision": true, "minValue": "{t1}/(1-(-1/{td}))", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "

For the geometric series:

\n

$\\var{t1} - \\simplify{{t1}/{td}} + \\simplify{{t1}/{td}^2} - \\simplify{{t1}/{td}^3} +...$

\n

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"tsum": {"definition": "random(11..19 except 21 except 22 except 23)", "templateType": "anything", "group": "Ungrouped variables", "name": "tsum", "description": ""}, "td": {"definition": "random(3..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "td", "description": ""}, "tr": {"definition": "random(4..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "tr", "description": ""}, "t1": {"definition": "td*random(10..100)", "templateType": "anything", "group": "Ungrouped variables", "name": "t1", "description": ""}}, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}