// Numbas version: finer_feedback_settings {"name": "Q6 Volume problems", "extensions": [], "custom_part_types": [], "resources": [["question-resources/formula-explanation-sphere-1_iSReoSM.jpg", "/srv/numbas/media/question-resources/formula-explanation-sphere-1_iSReoSM.jpg"], ["question-resources/1_Duq4W7D.png", "/srv/numbas/media/question-resources/1_Duq4W7D.png"], ["question-resources/charles1.1_CeMacDN.gif", "/srv/numbas/media/question-resources/charles1.1_CeMacDN.gif"], ["question-resources/hemisphere_31.png", "/srv/numbas/media/question-resources/hemisphere_31.png"], ["question-resources/5.Concrete_Pier_complete_800.jpg", "/srv/numbas/media/question-resources/5.Concrete_Pier_complete_800.jpg"], ["question-resources/cylinder-area.png", "/srv/numbas/media/question-resources/cylinder-area.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["size1", "size2", "ans1", "ans2", "ans3", "vol", "size3", "size4", "ans2a"], "name": "Q6 Volume problems", "tags": ["cylinder", "Cylinder", "Hemisphere", "hemisphere", "rebelmaths", "volume", "Volume"], "preamble": {"css": "", "js": ""}, "advice": "

Part1

\n

Volume of hemispherical container

\n

V = $\\frac{4}{3}\\pi r^3$

\n

$\\frac{4}{3} \\times\\pi \\times (\\frac{\\var{size2[0]}}{2})^3 = \\var{ans1}$

\n

Part2

\n

Volume of cylindrical container

\n

V = $\\pi r^2h$

\n

$r = \\sqrt \\frac{V}{\\pi h}$

\n

$Diameter = 2 \\times r$

\n

$2 \\times \\sqrt \\frac{\\var{vol}}{\\pi \\times \\var{size1}} = \\var{ans2a}$

\n

Part3

\n

Volume of cylindrical container

\n

V = $\\pi r^2h$

\n

$\\pi \\times (\\frac{\\var{size3}}{2})^2 \\times \\var{size4} = \\var{ans3}$

", "rulesets": {}, "parts": [{"prompt": "

\n

Calculate the volume of a hemishperical container of diameter $\\var{size2[0]}cm$.

\n

[[0]] $cm^3$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans1}", "strictPrecision": false, "minValue": "{ans1}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\n

A cylinrical tank has a volume of $\\var{vol}m^3$. If the height of the tank is $\\var{size1}m$, find its diameter length.

\n

[[0]] $m$

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans2a}", "strictPrecision": false, "minValue": "{ans2a}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

\n

Calculate the volume of concrete required to make a solid cylindrical pillar which has a diameter of $\\var{size3}$ metres and a perpendicular height of $\\var{size4}m$.

\n

[[0]] $m^3$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans3}", "strictPrecision": false, "minValue": "{ans3}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Solve the following volume questions to 2 decimal places.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"size4": {"definition": "random(2..6 #0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "size4", "description": ""}, "size1": {"definition": "random(3.25..6.25 #05)", "templateType": "anything", "group": "Ungrouped variables", "name": "size1", "description": ""}, "size2": {"definition": "shuffle(110..170#10)[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "size2", "description": ""}, "size3": {"definition": "random(0.61..0.89#0.01 except 0.7 except 0.8)", "templateType": "anything", "group": "Ungrouped variables", "name": "size3", "description": ""}, "vol": {"definition": "precround((pi*((ans2)^2)*size1),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "vol", "description": ""}, "ans1": {"definition": "(2/3)*(pi*(((size2[0])/2)^3))", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1", "description": ""}, "ans2": {"definition": "random(2.5..7#0.25)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2", "description": ""}, "ans3": {"definition": "(pi*((size3/2)^2)*size4)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans3", "description": ""}, "ans2a": {"definition": "ans2*2", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2a", "description": ""}}, "metadata": {"description": "

Volume Problems

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}]}]}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}]}