// Numbas version: finer_feedback_settings {"name": "Q7 Track shape problems", "extensions": [], "custom_part_types": [], "resources": [["question-resources/area-of-a-equilateral-triangle-formula_RlGhwyD.png", "/srv/numbas/media/question-resources/area-of-a-equilateral-triangle-formula_RlGhwyD.png"], ["question-resources/115650640143b203406ae67.jpg", "/srv/numbas/media/question-resources/115650640143b203406ae67.jpg"], ["question-resources/display-illustration.jpg", "/srv/numbas/media/question-resources/display-illustration.jpg"], ["question-resources/pfig1.jpg", "/srv/numbas/media/question-resources/pfig1.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["size", "size2", "size3", "ans11", "ans12", "ans21", "ans22", "ans31", "ans32"], "name": "Q7 Track shape problems", "tags": ["area", "Area", "rebelmaths", "teame"], "preamble": {"css": "", "js": ""}, "advice": "
Part 1
\n$(2 \\times \\pi \\times \\frac{\\var{size[0]}}{2}) + (2 \\times \\var{size[0]}) = \\var{ans11}m$
\n$(\\pi \\times (\\frac{\\var{size[0]}}{2})^2) + (\\var{size[0]}^2) = \\var{ans12}m^2$
\n\nPart 2
\n\n$(\\pi \\times \\frac{\\var{size[1]}}{2}) + (2 \\times \\var{size[1]}) + (2 \\times \\var{size[1]}) = \\var{ans21}m$
\n$\\frac{(\\pi \\times (\\frac{\\var{size[1]}}{2})^2)}{2} + (\\var{size[1]}^2) +(\\frac{\\sqrt(3)}{4} \\times (\\var{size[1]}^2)) = \\var{ans22}m^2$
\n\nPart 3
\n$(2 \\times \\pi \\times \\frac{\\var{size3}}{2}) + (2 \\times \\var{size2}) = \\var{ans31}m$
\n$(\\pi \\times (\\frac{\\var{size3}}{2})^2) + (\\var{size2} \\times \\var{size3}) = \\var{ans32}m^2$
", "rulesets": {}, "parts": [{"prompt": "\nThe figure above shows a running track which is made up of a square of side $\\var{size[0]}$ metres and a semi-circle on each end.
\n(i) Calculate the perimeter of the running track.
\n[[0]]m
\n(ii) Calculate the area enclosed by the running track.
\n[[1]]$m^2$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans11}", "strictPrecision": false, "minValue": "{ans11}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans12}", "strictPrecision": false, "minValue": "{ans12}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "\nThe figure above is made up of a square of side $\\var{size[1]}$ metres and a semi-circle on one end and an equilateral triangle on the other end.
\n(i) Calculate the perimeter of the figure.
\n[[0]]m
\n(ii) Calculate the area of the figure.
\n[[1]]$m^2$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans21}", "strictPrecision": false, "minValue": "{ans21}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans22}", "strictPrecision": false, "minValue": "{ans22}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "\nThe figure above shows a running track which is made up of a rectangle of length $\\var{size2}$ metres and width $\\var{size3}$ metres and a semi-circle on each end.
\n(i) Calculate the perimeter of the running track.
\n[[0]]m
\n(ii) Calculate the area enclosed by the running track.
\n[[1]]$m^2$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans31}", "strictPrecision": false, "minValue": "{ans31}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{ans32}", "strictPrecision": false, "minValue": "{ans32}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "Solve the following questions to 2 decimal places!!
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"size2": {"definition": "random(45..70)", "templateType": "anything", "group": "Ungrouped variables", "name": "size2", "description": ""}, "size3": {"definition": "random(25..40)", "templateType": "anything", "group": "Ungrouped variables", "name": "size3", "description": ""}, "ans12": {"definition": "(pi*(size[0]/2)^2)+(size[0]^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans12", "description": ""}, "ans11": {"definition": "(2*pi*(size[0]/2))+(2*size[0])", "templateType": "anything", "group": "Ungrouped variables", "name": "ans11", "description": ""}, "ans31": {"definition": "(2*pi*(size3/2))+(2*size2)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans31", "description": ""}, "ans32": {"definition": "(pi*(size3/2)^2)+(size2*size3)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans32", "description": ""}, "ans22": {"definition": "((pi*(size[1]/2)^2)/2)+(size[1]^2)+((sqrt(3)/4)*size[1]^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans22", "description": ""}, "ans21": {"definition": "(pi*(size[1]/2))+(2*size[1])+(2*size[1])", "templateType": "anything", "group": "Ungrouped variables", "name": "ans21", "description": ""}, "size": {"definition": "shuffle(25..77#0.2)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "size", "description": ""}}, "metadata": {"description": "Area and perimeter of compound shapes
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}]}]}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}]}