// Numbas version: finer_feedback_settings {"name": "Julie's copy of Matrix Multiplication 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11"], "name": "Julie's copy of Matrix Multiplication 1", "tags": ["matrices", "matrix", "matrix multiplication", "matrix product", "multiplication of matrices", "multiplying matrices", "product of matrices"], "advice": "

This video may be helpful. Matrix Multiplication video

\n

a)

\n

\\[ \\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

b)

\n

\\[ \\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

c)

\n

\\[ \\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

d)

\n

\\[ \\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "parts": [{"prompt": "

$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix} = $ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "numColumns": "2", "tolerance": 0, "allowFractions": false, "variableReplacements": [], "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ab11,ab12],\n [ab21,ab22]\n])", "scripts": {}, "correctAnswerFractions": false, "marks": 1, "type": "matrix", "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "numColumns": "2", "tolerance": 0, "allowFractions": false, "variableReplacements": [], "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ba11,ba12],\n [ba21,ba22]\n])", "scripts": {}, "correctAnswerFractions": false, "marks": 1, "type": "matrix", "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$CB = \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix} \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "numColumns": "2", "tolerance": 0, "allowFractions": false, "variableReplacements": [], "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [cb11,cb12],\n [cb21,cb22]\n])", "scripts": {}, "correctAnswerFractions": false, "marks": 1, "type": "matrix", "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$AC = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"variableReplacementStrategy": "originalfirst", "numColumns": "2", "tolerance": 0, "allowFractions": false, "variableReplacements": [], "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ac11,ac12],\n [ac21,ac22]\n])", "scripts": {}, "correctAnswerFractions": false, "marks": 1, "type": "matrix", "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "\n \n \n

Do the following matrix problems
Let
\\[A=\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix},\\;\\;\n \n B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix},\\;\\;\n \n C=\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\]
Calculate the following products of these matrices:

\n \n \n \n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"ba21": {"definition": "b21*a11+b22*a21", "templateType": "anything", "group": "Ungrouped variables", "name": "ba21", "description": ""}, "a21": {"definition": "random(-2..2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a21", "description": ""}, "a22": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "a22", "description": ""}, "ba22": {"definition": "b21*a12+b22*a22", "templateType": "anything", "group": "Ungrouped variables", "name": "ba22", "description": ""}, "cb21": {"definition": "c21*b11+c22*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "cb21", "description": ""}, "b22": {"definition": "random(-3..-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b22", "description": ""}, "b21": {"definition": "random(2,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b21", "description": ""}, "cb22": {"definition": "c21*b12+c22*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "cb22", "description": ""}, "ac22": {"definition": "a21*c12+a22*c22", "templateType": "anything", "group": "Ungrouped variables", "name": "ac22", "description": ""}, "ac21": {"definition": "a21*c11+a22*c21", "templateType": "anything", "group": "Ungrouped variables", "name": "ac21", "description": ""}, "ab22": {"definition": "a21*b12+a22*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "ab22", "description": ""}, "ab21": {"definition": "a21*b11+a22*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "ab21", "description": ""}, "b12": {"definition": "random(-3..1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b12", "description": ""}, "b11": {"definition": "random(-3,-1,0,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b11", "description": ""}, "c12": {"definition": "a12+b12", "templateType": "anything", "group": "Ungrouped variables", "name": "c12", "description": ""}, "c11": {"definition": "random(1,0,4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c11", "description": ""}, "ab12": {"definition": "a11*b12+a12*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "ab12", "description": ""}, "a11": {"definition": "random(-2,1,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a11", "description": ""}, "cb11": {"definition": "c11*b11+c12*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "cb11", "description": ""}, "cb12": {"definition": "c11*b12+c12*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "cb12", "description": ""}, "a12": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a12", "description": ""}, "ab11": {"definition": "a11*b11+a12*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "ab11", "description": ""}, "ba11": {"definition": "b11*a11+b12*a21", "templateType": "anything", "group": "Ungrouped variables", "name": "ba11", "description": ""}, "ba12": {"definition": "b11*a12+b12*a22", "templateType": "anything", "group": "Ungrouped variables", "name": "ba12", "description": ""}, "c22": {"definition": "random(0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c22", "description": ""}, "c21": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c21", "description": ""}, "ac12": {"definition": "a11*c12+a12*c22", "templateType": "anything", "group": "Ungrouped variables", "name": "ac12", "description": ""}, "ac11": {"definition": "a11*c11+a12*c21", "templateType": "anything", "group": "Ungrouped variables", "name": "ac11", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

10/07/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Display of matrices looks untidy when individual components include negative numbers.

\n \t\t \t\t

Is it worthwhile restricting all components of matrices to be non zero?

\n \t\t \t\t

Question appears to be working correctly.

\n \t\t \n \t\t", "description": "

Multiplication of $2 \\times 2$ matrices.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}