// Numbas version: finer_feedback_settings {"name": "Combining fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "dosomething": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1<0,'Take away', 'Add')", "description": "", "name": "dosomething"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(f=2,1,f=3,random(1,2),f=4,random(1,3),f=5, random(1..4),f=6,random(1,5),f=7,random(1..6),f=8,random(1,3,5,7),f=9,random(1,2,4,5,7,8),f=10,random(1,3,7,9),f=11,random(1..10))", "description": "", "name": "b"}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(g=2,random(3..11#2),g=3,random(2,4,5,7,8,10,11),g=4,random(3,5,7,9,11),g=5, random(2,3,4,6,7,8,9,11),g=6,random(5,7,11),g=7,random(2,3,4,5,6,8,9,10,11),g=8,random(3,5,7,9,11),g=9,random(2,4,5,7,8,10,11),g=10,random(3,7,9),g=11,random(2..10),g=12,random(5,7,11))", "description": "", "name": "f"}, "action1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1<0,'taking away', 'adding')", "description": "", "name": "action1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..11)", "description": "", "name": "a"}, "g": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(a=1, random(2..11),a=2,random(3..11#2),a=3,random(4,5,7,8,10,11),a=4,random(5,7,9,11),a=5, random(6,7,8,9,11),a=6,random(7,11),a=7,random(8,9,10,11),a=8,random(9,11),a=9,random(10,11),a=10,11,a=11,12)", "description": "", "name": "g"}, "action": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1<0,'Taking away', 'Adding')", "description": "", "name": "action"}}, "ungrouped_variables": ["a", "b", "g", "dosomething", "f", "s1", "action1", "action"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Combining fractions", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0.5, "scripts": {}, "gaps": [{"answer": "{a*f+s1*b*g}/{g*f}", "musthave": {"message": "
You must write your answer in the form p/q for integers p and q
", "showStrings": false, "partialCredit": 0, "strings": ["/"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.0001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "You must write your answer in the form p/q for integers p and q
", "showStrings": false, "partialCredit": 0, "strings": ["+", ".", "(", ")", "1-", "2-", "3-", "4-", "5-", "6-", "7-", "8-", "9-"]}, "showpreview": true, "maxlength": {"length": 7, "message": "answer too long
", "partialCredit": 0}, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\\[\\simplify[std]{{a} / {g} + ({s1*b} / {f})}\\]
Input your answer here: [[0]]
No decimal numbers allowed.
\nDo not include brackets in your answer.
\nYou can get help by clicking on Steps. If you do so you will lose 1/2 mark.
", "steps": [{"type": "information", "prompt": "The rule for {action1} fractions is \\[\\simplify{a/b+ {s1}*(c/d)=(a*d+{s1}*b*c)/(b*d)}.\\]
", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n{dosomething} the following fractions and reduce the\n \n resulting fraction to lowest form.
Input your answer as a fraction and not\n \n as a decimal.
Putting something here so Loughborough doesn't break.
", "licence": "Creative Commons Attribution 4.0 International", "description": "Add/subtract fractions and reduce to lowest form.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "The rule for {action1} fractions is \\[\\simplify{a/b+ {s1}*(c/d)=(a*d+{s1}*b*c)/(b*d)}.\\]
In this case we have:
\\[\\simplify[std,!unitFactor]{{a} / {g} + ({s1*b} / {f}) = ({a} * {f} + {g} * {s1*b}) / ({g} * {f}) ={a*f+s1*g*b}/{g*f}}.\\]
Note that this fraction is in its lowest form as there are no common factors in the denominator and the numerator.