// Numbas version: finer_feedback_settings {"name": "Find least upper bounds and greatest lower bounds of various sets", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "a8": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(7..20)", "description": "", "name": "a8"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "c6": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "name": "c6"}, "b4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "r5^2*a4", "description": "", "name": "b4"}, "lub3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1>0,a2+b2,a2)", "description": "", "name": "lub3"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "-random(1..9)", "description": "", "name": "a1"}, "a7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(10..20)", "description": "", "name": "a7"}, "perhaps2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1>0,'Yes','No')", "description": "", "name": "perhaps2"}, "a5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "a5"}, "b6": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "name": "b6"}, "a6": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a6"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "b"}, "sg": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "description": "", "name": "sg"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "name": "a2"}, "s9": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b6<0,1,-1)", "description": "", "name": "s9"}, "perhaps1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1<0,'Yes','No')", "description": "", "name": "perhaps1"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "c"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s*random(1..9)", "description": "", "name": "d"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "m"}, "b7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b7"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "b8": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a8-random(1..5)", "description": "", "name": "b8"}, "b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b2"}, "r": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "name": "r"}, "ans4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "2*a4*r5", "description": "", "name": "ans4"}, "b5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b5"}, "a4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a4"}, "s": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s"}, "glb6": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(a6*b6^2-2*a6*b6^2+4*a6^2*c6)/(4*a6^2)", "description": "", "name": "glb6"}, "r5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,3,4,5)", "description": "", "name": "r5"}, "glb3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1>0,a2,a2-b2)", "description": "", "name": "glb3"}, "mo": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1=1,'de','in')", "description": "", "name": "mo"}, "something": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1=-1,'positive','negative')", "description": "", "name": "something"}, "glb7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround((sqrt(1+a7)-sqrt(1+b7)),2)", "description": "", "name": "glb7"}}, "ungrouped_variables": ["ans4", "b4", "b5", "b6", "b7", "b1", "b2", "b8", "s9", "s2", "s1", "glb7", "glb6", "glb3", "a1", "a2", "a5", "a4", "a7", "a6", "a8", "c6", "a", "r5", "c", "b", "lub3", "d", "mo", "m", "s", "r", "perhaps1", "perhaps2", "sg", "something"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Find least upper bounds and greatest lower bounds of various sets", "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "

\\[S = \\left\\{\\simplify[std]{({a}n^2+{a1})/({b}n^2+{b1})}\\;\\;:\\;\\;n \\in \\mathbb{Z} \\right\\}\\]

\n

Greatest lower bound = [[0]] (Enter as a fraction or integer, not a decimal.)

\n

Least upper bound = [[1]] (Enter as a fraction or integer, not a decimal.)

\n

Does the glb lie in the set? [[2]]

\n

Does the lub lie in the set? [[3]]

\n

 

\n

 

", "scripts": {}, "gaps": [{"answer": "{a1}/{b1}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Enter as a fraction or integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"answer": "{a}/{b}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Enter as a fraction or integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [1, 0], "marks": 0}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 0, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [0, 1], "marks": 0}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "

\\[S = \\left\\{ x \\in \\mathbb{R}\\;:\\;\\simplify[std]{{c}x^{2m+1} < {d}x^{2m}} \\right\\}\\]

\n

Greatest lower bound = [[0]]

\n

Does this lie in the set? [[1]]

\n

Least upper bound = [[2]]  (Enter as a fraction or integer, not a decimal.)

\n

Does this lie in the set? [[3]]

", "scripts": {}, "gaps": [{"answer": "-infinity", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [0, 1], "marks": 0}, {"answer": "{d}/{c}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Enter as a fraction or integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [0, 1], "marks": 0}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "

\\[S = \\left\\{\\simplify[std]{{a2}+{s1}*{b2}/n^{r}}\\;\\;:\\;\\;n \\in \\mathbb{N} \\right\\}\\]

\n

Greatest lower bound = [[0]] (Enter as a fraction or integer, not a decimal.)

\n

Does this lie in the set? [[1]]

\n

Least upper bound = [[2]] (Enter as a fraction or integer, not a decimal.)

\n

Does this lie in the set? [[3]]

", "scripts": {}, "gaps": [{"answer": "{glb3}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Enter as a fraction or integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

{perhaps1}

", "

{perhaps2}

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [1, 0], "marks": 0}, {"answer": "{lub3}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Enter as a fraction or integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

{perhaps2}

", "

{perhaps1}

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [1, 0], "marks": 0}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n\n\n

\\[S = \\left\\{\\simplify[std]{{a4}x+{b4}/x}\\;\\;:\\;\\;x \\in \\mathbb{R},\\;\\;x \\gt 0 \\right\\}\\]

\n\n\n\n

Greatest lower bound = [[0]]

\n\n\n\n

Does this lie in the set? [[1]]

\n\n\n\n

Least upper bound = [[2]] $\\;\\;\\;\\;$

\n\n\n\n

Does this lie in the set? [[3]]

\n\n", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{ans4}", "minValue": "{ans4}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [1, 0], "marks": 0}, {"answer": "infinity", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}, {"displayType": "radiogroup", "choices": ["

Yes

", "

No

"], "showCorrectAnswer": true, "displayColumns": 2, "distractors": ["", ""], "variableReplacements": [], "shuffleChoices": false, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "matrix": [0, 1], "marks": 0}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "

For each of the following sets $S$ , state the least upper bound (lub) and the greatest lower bound (glb), where appropriate.

\n

If the set is not bounded above, enter the lub as infinity by typing in the word infinity.

\n

If the set is not bounded below, enter the glb as -infinity by typing in -infinity.

\n

$\\mathbb{N}$ denotes the set of natural numbers, $\\mathbb{Z}$ the set of integers and $\\mathbb{R}$ the set of real numbers.

\n

Also state if the lub or glb belong to the set.

\n

There are $8$ parts to this question, so you may need to scroll down to answer all parts.

", "tags": ["bounded above", "bounded below", "bounded set", "bounds", "checked2015", "cr1", "glb", "greatest lower bound", "least upper bound", "limit", "limits", "lower bound", "lub", "MAS1601", "mas1601", "max value", "maximum value", "min value", "minimum value", "not bounded", "query", "sets", "tested1", "upper bound"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

4/07/2012:

\n

Added tags. Corrected tags.

\n

Corrected mistake in answer to first part (minus sign missing).

\n

5/07/2012:

\n

There is an issue with the MCQs - this has been reported on Github.

\n

Also an issue with recognising infinity as an answer - also reported on Github.

\n

Changed to Match Text Pattern, but Correct Answer not properly displayed for $\\pm \\infty$

\n

Also an issue with reordering gaps in a gapfill - wishlist item on Github

\n

Advice display tidied up.

\n

21/07/2012:

\n

Error in part c first MCQ. Corrected.

\n

Instructions about using fractions and integers included.

\n

Added description.

\n

Have used Matching Expressions question typefor identifying $\\pm \\infty$ as answers.

\n

27/7/2012:

\n

Added tags.

\n

Edited grammar in Advice section.

\n

24/12/2012:

\n

Checked calculations. Added tested1 tag.

\n

Question now accepts infinity and -infinity as possible answers. Query raised as could use html code for infinity to display correct answer for the Word Match rather than the input strings. However, these are not the same as the student would input. Added query tag.

\n

Tested rounding, OK. Added cr1 tag.

\n

C

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Eight questions on finding least upper bounds and greatest lower bounds of various sets.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)
\\[\\begin{eqnarray*} \\simplify[std]{({a}n^2+{a1})/({b}n^2+{b1})}&=& \\simplify[std]{(({a} / {b}) * ({b} * n ^ 2 + {b1}) + {a1} -({a * b1} / {b})) / ({b} * n ^ 2 + {b1})}\\\\ &=& \\simplify[std]{{a} / {b} -({( -a1) * b + a * b1} / ({b} * ({b} * n ^ 2 + {b1})))}\\\\ \\end{eqnarray*} \\]
Note that 1) the values for positive and negative values of $n$ are the same and 2) as $n$ increases this expression increases.

\n

The greatest lower bound occurs when $n=0$ and the value is $\\displaystyle \\simplify[std]{{a1}/{b1}}$.

\n

As $n$ increases, the value of the expression approaches as close as we like to $\\displaystyle \\simplify[std]{{a}/{b}}$ , but is always less than $\\displaystyle \\simplify[std]{{a}/{b}}$.

\n

Hence the least upper bound is $\\simplify[std]{{a}/{b}}$.

\n

b)
\\[\\begin{eqnarray*} \\simplify[std]{{c} * x ^ {2 * m + 1}}&\\lt&\\simplify[std]{ {d} * x ^ {2 * m}} \\Leftrightarrow\\\\ \\simplify[std]{x ^ {2 * m} * ({c} * x -{d})} &\\lt& 0 \\Leftrightarrow\\\\ \\simplify[std]{{c}x-{d}} &\\lt& 0 \\textrm{ as }x^{\\var{2*m}} \\geq 0 \\end{eqnarray*} \\]

\n

Hence this set is the same as the set
\\[\\left \\{x \\in \\mathbb{R}\\;\\;:\\;\\;x \\lt \\simplify[std]{{d}/{c}}\\right\\}\\]
This set does not have a greatest lower bound so you enter -infinity.

\n

It does have a least upper bound and this is $\\simplify[std]{{d}/{c}}$

\n

c)
\\[S = \\left\\{\\simplify[std]{{a2}+{s1}*{b2}/n^{r}}\\;\\;:\\;\\;n \\in \\mathbb{N} \\right\\}\\]
Let $\\displaystyle a_n=\\simplify[std]{{a2}+{s1}*{b2}/n^{r}}$

\n

As $n$ increases we see that $a_n$ {mo}creases and converges to the limit $\\var{a2}$.

\n

Hence greatest lower bound = $\\var{glb3}$ and least upper bound = $\\var{lub3}$

\n

d)
\\[S = \\left\\{\\simplify[std]{{a4}x+{b4}/x}\\;\\;:\\;\\;x \\in \\mathbb{R},\\;\\;x \\gt 0 \\right\\}\\]

\n

It is clear that this set does not have a least upper bound, so we enter infinity for this value.

\n

However it does have a lower bound as we have $\\displaystyle \\var{a4}x+\\frac{\\var{b4}}{x} \\gt 0,\\;\\;\\forall x \\gt 0 $.

\n

To find the greatest lower bound we find the minimum value of $\\displaystyle g(x)=\\var{a4}x+\\frac{\\var{b4}}{x},\\;\\;x \\gt 0 $.

\n

Now $\\displaystyle g'(x)=\\var{a4}-\\frac{\\var{b4}}{x^2}$ and $g'(x)=0$ when $\\displaystyle x=\\sqrt{\\frac{\\var{b4}}{\\var{a4}}} = \\var{r5}$.

\n

(We take the positive square root as $x \\gt 0$).

\n

It is not hard to see that this gives a minimum value for $g(x)$ and $g(\\var{r5})=\\var{ans4}$.

\n

Hence the greatest lower bound is $\\var{ans4}$ as $g(x) \\geq \\var{ans4},\\;\\;\\forall x \\gt 0$.

\n

 

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}