// Numbas version: exam_results_page_options {"name": "Differentiate products of hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b2"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..7)", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "name": "b"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-1)", "description": "", "name": "a1"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a", "a1", "a2", "b", "b1", "b2", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Differentiate products of hyperbolic functions", "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "\n

$f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * Cosh({a1} * x + {b1})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n

$f(x)=\\tanh(\\simplify[std]{{a}x+{b}})$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{a}*sech({a}x+{b})^2", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n

$f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}}))$

\n

$\\displaystyle{\\frac{df}{dx}=\\;\\;}$[[0]]

\n ", "scripts": {}, "gaps": [{"answer": "{a2} * tanh({a2} * x + {b2})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 5, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "\n \n \n

Write down the derivatives of the following functions $f(x)$ .

\n \n \n \n

Note that in order to input the square of a function such as $\\sinh(x)$ you have to input it as $(\\sinh(x))^2$, similarly for the other hyperbolic functions.

\n \n \n ", "tags": ["calculus", "Calculus", "chain rule", "checked2015", "cosh", "derivatives of hyperbolic functions", "differential", "differential ", "differentiate", "differentiating hyperbolic functions", "differentiation", "hyperbolic functions", "MAS1601", "mas1601", "product rule", "query", "sinh", "tanh", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

29/06/2012:

\n

Added and edited tags.

\n

19/07/2012:

\n

Added description.

\n

There is also the problem of inputting functions of the form $xf(x)$ if $n=1$ or $2$ in the first question. So have reset $n$ to between $3$ and $7$. Otherwise would have to have an instruction here (perhaps depending on value of $n$).

\n

Checked calculation.

\n

23/07/2012:

\n

Added tags.

\n

Question appears to be working correctly.

\n

22/12/2012:(WHF)

\n

Checked calculations, OK. Added tested1 tag.

\n

If users factorise the answer to the first question they may be inputting something of the form xf(x). So may be wise to write an instruction to use x*f(x). Raised as a query via the query tag.

\n

 

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate the following functions: $\\displaystyle x ^ n \\sinh(ax + b),\\;\\tanh(cx+d),\\;\\ln(\\cosh(px+q))$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Here is a table of the derivatives of some of the hyperbolic functions:

\n\n\n\n\n\n\n\n
$f(x)$$\\displaystyle{\\frac{df}{dx}}$
$\\sinh(bx)$$b\\cosh(bx)$
$\\cosh(bx)$$b\\sinh(bx)$
$\\tanh(bx)$$\\simplify{b*sech(bx)^2}$
\n

a)          $\\displaystyle{f(x)=\\simplify[std]{ x ^ {n} * sinh({a1} * x + {b1})}}$

\n

Using the product rule we obtain:

\n

\\[\\frac{df}{dx} = \\simplify[std]{{n} * (x ^ {(n -1)}) * sinh({a1} * x + {b1}) + {a1} * (x ^ {n}) * cosh({a1} * x + {b1})}\\]

\n

b)          $\\displaystyle{f(x)=\\tanh(\\simplify[std]{{a}x+{b}})}$

\n

Using the table we can immediately write the derivative as:

\n

\\[\\frac{df}{dx} = \\simplify[std]{{a}*sech({a}x+{b})^2}\\]

\n

c)          $\\displaystyle{f(x)=\\ln(\\cosh(\\simplify[std]{{a2}x+{b2}})}$

\n

Here we employ the chain rule.  We set $u=\\cosh(\\simplify[std]{{a2}x+{b2}})$, such that $f(x)=f(u)=\\ln u$.  Then, according to the chain rule:

\n

\\[\\frac{df}{dx}=\\frac{df}{du}\\cdot \\frac{du}{dx} \\]

\n

Evaluating the derivatives on the right-hand side: $\\displaystyle{\\frac{du}{dx}=\\simplify[std]{{a2}*sinh({a2}x+{b2})}}$ and $\\displaystyle{\\frac{df}{du}=\\frac{1}{u}=\\frac{1}{\\cosh(\\simplify[std]{{a2}x+{b2}})}}$.  

\n

Then, inserting these into the chain rule gives:

\n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\frac{\\simplify[std]{{a2} * sinh({a2} * x + {b2})}}{\\cosh(\\simplify[std]{{a2}x+{b2}})} \\\\ &=& \\simplify[std]{{a2} * tanh({a2} * x + {b2})}\\end{eqnarray*}\\]

\n

 

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}