// Numbas version: finer_feedback_settings {"name": "Differentiation: Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "name": "c1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(a*d=b*c1,c1+1,c1)", "description": "", "name": "c"}, "det": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a*d-b*c", "description": "", "name": "det"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "name": "d"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Differentiation: Quotient rule", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "{det}/({c}x+{d})^2", "showCorrectAnswer": true, "vsetrange": [10, 11], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t
\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}*x+{d})}\\]
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\t", "steps": [{"type": "information", "prompt": "The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
Differentiate the following function $f(x)$ using the quotient rule.
", "tags": ["Calculus", "calculus", "checked2015", "derivative of a quotient", "derivatives", "derivatives ", "differentiate a rational polynomial", "differentiation", "mas1601", "MAS1601", "quotient rule"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t1/08/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tImproved display of prompt.
\n\t\tChecked calculation. OK.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $\\displaystyle \\frac{ax+b}{cx+d}$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t \n\t \n\tThe quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = ({c} * x+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {c}}\\]
\n\t \n\t \n\t \n\tHence on substituting into the quotient rule above we get:
\n\t \n\t \n\t \n\t\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x+{d})-{c}({a}x+{b}))/({c}x+{d})^2}\\\\\n\t \n\t &=&\\simplify[std]{({a*c}x+{a*d}-{c*a}x-{c*b})/({c}x+{d})^2}\\\\\n\t \n\t &=&\\simplify[std]{{det}/({c}x+{d})^2}\n\t \n\t \\end{eqnarray*}\\]
\n\t \n\t \n\t", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}