// Numbas version: finer_feedback_settings {"name": "Quotient rule - differentiate quadratic over quadratic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "description": ""}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..8)", "name": "c1", "description": ""}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "name": "d", "description": ""}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(a*d=b*c1,c1+1,c1)", "name": "c", "description": ""}, "det": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a*d-b*c", "name": "det", "description": ""}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "name": "b", "description": ""}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s2", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "name": "a", "description": ""}}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "name": "Quotient rule - differentiate quadratic over quadratic", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"answer": "{2*det}x", "showCorrectAnswer": true, "vsetrange": [0, 1], "scripts": {}, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "
Input numbers as fractions or integers and not as decimals.
", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "checkingaccuracy": 0.001, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "steps": [{"type": "information", "showCorrectAnswer": true, "prompt": "The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
\\[\\simplify[std]{f(x) = ({a} * x^2+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$
$g(x)=\\;$[[0]]
\nInput numbers as fractions or integers and not as decimals.
\nClick on Show steps for more information. You will not lose any marks by doing so.
\n ", "marks": 0}], "statement": "Differentiate the following function $f(x)$ using the quotient rule.
", "tags": ["algebraic manipulation", "Calculus", "checked2015", "derivative of a quotient", "differentiation", "MAS1601", "quotient rule", "Steps"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t1/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation. OK.
\n \t\tAdded information about Show steps. Altered to 0 marks lost rather than 1.
\n \t\tChanged std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.
\n \t\tImproved display in various places.
\n \t\tAdded condition that numbers have to be inout as fractions or integers - added decimal point to forbidden strings.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "The derivative of $\\displaystyle \\frac{ax^2+b}{cx^2+d}$ is $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \nThe quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
For this example:
\n \n \n \n\\[\\simplify[std]{u = ({a}x^2+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {2*a}x}\\]
\n \n \n \n\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]
\n \n \n \nHence on substituting into the quotient rule above we get:
\n \n \n \n\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({2*a}x({c}x^2+{d})-{2*c}x({a}x^2+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*a*c}x^3+{2*a*d}x-{2*c*a}x^3-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({2*det}x)/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{2*det}x}$