// Numbas version: finer_feedback_settings {"name": "Quotient rule - differentiate quotient of trig functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Quotient rule - differentiate quotient of trig functions", "tags": ["checked2015"], "metadata": {"description": "

Find $\\displaystyle \\frac{d}{dx}\\left(\\frac{m\\sin(ax)+n\\cos(ax)}{b\\sin(ax)+c\\cos(ax)}\\right)$. Three part question.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Differentiate the following functions using the quotient rule.

", "advice": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then

\n

\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

a)

\n

For this example:

\n

\\[\\simplify[std]{u = sin({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}cos({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\begin{align}
\\frac{\\mathrm{d}f}{\\mathrm{d}x} &= \\simplify[std]{({a}cos({a}x)({b}sin({a}x)+{c}cos({a}x))-sin({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({a*b} cos({a}x) sin({a}x)+{a*c} cos({a}x)^2-{a*b} sin({a}x)cos({a}x)+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({a*c}cos({a}x)^2+{a*c}sin({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({a*c}(cos({a}x)^2+sin({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({a*c})/({b}sin({a}x)+{c}cos({a}x))^2}
\\end{align}

\n

Hence $a=\\var{a*c}$.

\n

b)

\n

\\[\\simplify[std]{u = cos({a}x)}\\Rightarrow \\simplify[std]{Diff(u,x,1) = -{a}sin({a}x)}\\]

\n

\\[\\simplify[std]{v = {b}sin({a}x)+{c}cos({a}x)} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {a*b}cos({a}x)+{-a*c}sin({a}x)}\\]

\n

Hence on substituting into the quotient rule above we get:

\n

\\begin{align}
\\frac{\\mathrm{d}g}{\\mathrm{d}x} &= \\simplify[std]{({-a}sin({a}x)({b}sin({a}x)+{c}cos({a}x))-cos({a}x)({a*b}cos({a}x)+{-a*c}sin({a}x)))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({-a*b}sin({a}x)^2-{a*c} sin({a}x)cos({a}x)-{a*b}cos({a}x)^2+{a*c}sin({a})cos({a}x))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({-a*b}sin({a}x)^2-{a*b}cos({a}x)^2)/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({-a*b}(sin({a}x)^2+cos({a}x)^2))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{({-a*b})/({b}sin({a}x)+{c}cos({a}x))^2}
\\end{align}

\n

Hence $b=\\var{-a*b}$.

\n

c)

\n

We have that $h(x)=\\simplify[std]{{m}f(x)+{n}g(x)}$.

\n

Hence

\n

\\begin{align}
\\frac{\\mathrm{d}h}{\\mathrm{d}x} &= \\simplify[std]{{m}*Diff(f,x,1)+{n}*Diff(f,x,1)} \\\\[0.5em]
&= \\simplify[std]{{m}*({a*c}/({b}sin({a}x)+{c}cos({a}x))^2)+{n}({-a*b}/({b}sin({a}x)+{c}cos({a}x))^2)} \\\\[0.5em]
&= \\simplify[std]{(({m}*{a*c})+({n}*{-a*b}))/({b}sin({a}x)+{c}cos({a}x))^2} \\\\[0.5em]
&= \\simplify[std]{{res}/({b}sin({a}x)+{c}cos({a}x))^2}
\\end{align}

\n

Hence $c=\\var{res}$.

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noleadingMinus"]}, "extensions": [], "variables": {"s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "s1*random(2..8)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "if(m*c=n1*b,n1+1,n1)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything"}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "s2*random(2..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "res": {"name": "res", "group": "Ungrouped variables", "definition": "m*a*c-n*b*a", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "if(b^2=c1^2,c1+1,c1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "s2", "s1", "m", "n", "res", "n1", "c1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\simplify[std]{f(x) = (sin({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(f,x,1) = a / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $a$. You have to find $a$.

\n

$a=$ [[0]]

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\simplify[std]{g(x) = (cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(g,x,1) = b / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $b$. You have to find $b$.

\n

$b=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "6", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-b*a}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

\\[\\simplify[std]{h(x) = ({m}sin({a}x)+{n}cos({a}x))/({b}sin({a}x)+{c}cos({a}x))}\\]

\n

You are given that \\[\\simplify[std]{Diff(h,x,1) = c / ({b}sin({a}x)+{c}cos({a}x))^2}\\]

\n

for a number $c$. You have to find $c$.

\n

$c=$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "9", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{res}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}