// Numbas version: finer_feedback_settings {"name": "Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b1=a,b1+s3,b1)", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "c"}, "s3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s3"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "name": "b1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "name": "a"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}}, "ungrouped_variables": ["a", "c", "b", "s3", "s2", "s1", "b1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Integration by partial fractions", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C", "vsetrange": [11, 12], "checkingaccuracy": 0.0001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input all numbers as fractions or integers and not decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$I=\\;$[[0]]

\n\t\t\t

Input all numbers as fractions or integers and not decimals.

\n\t\t\t

Input the constant of integration as $C$.

\n\t\t\t

Click on Show steps for help if you need it. You will lose 1 mark if you do so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "\n\t\t\t\t\t

First of all factorise the denominator.

\n\t\t\t\t\t

You have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$.

\n\t\t\t\t\t

Then use partial fractions to write:
\\[\\simplify[std]{{c}/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]

\n\t\t\t\t\t

for suitable integers or fractions $A$ and $B$.

\n\t\t\t\t\t", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n\t

Find the following integral.

\n\t

\\[I = \\simplify[std]{Int({c}/(x^2+{a+b}*x+{a*b}),x )}\\]

\n\t

Input all numbers as fractions or integers and not decimals.

\n\t

Input the constant of integration as $C$.

\n\t", "tags": ["2 distinct linear factors", "Calculus", "MAS1601", "Steps", "checked2015", "completing the square", "constant of integration", "factorising a quadratic", "factorizing a quadratic", "indefinite integration", "integration", "partial fractions", "two distinct linear factors"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

5/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Added decimal point as forbidden string.

\n\t\t

Note the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?

\n\t\t

Improved display of Advice. 

\n\t\t

Added information about Show steps, also introduced penalty of 1 mark.

\n\t\t

Added !noLeadingMinus to ruleset std for display purposes.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "\n\t\t

Factorise $x^2+bx+c$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{a}{x^2+bx+c }\\;dx$ using partial fractions or otherwise.

\n\t\t

 

\n\t\t"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t

First we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$.

\n\t

You can do this by spotting the factors or by completing the square.

\n\t

Next we use partial fractions to find $A$ and $B$ such that:
\\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:

\n\t

$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}}\\Rightarrow \\simplify[std]{(A+B)x+{b}A+{a}B={c}}$

\n\t

Identifying coefficients:

\n\t

Constant term: $\\simplify[std]{{b}*A+{a}*B = {c}}$

\n\t

Coefficent $x$: $ \\simplify[std]{A + B = 0}$ which gives $A = -B$.

\n\t

Hence we obtain $\\displaystyle \\simplify[std]{A = {c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={-c}/{b-a}}$

\n\t

Which gives: \\[\\simplify[std]{{c}/((x +{a})*(x+{b})) = ({c}/{b-a})*(1/(x+{a}) -1/(x+{b}))}\\]

\n\t

So \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int({c}/(x^2+{a+b}*x+{a*b}),x )}\\\\ &=& \\simplify[std]{Int({c}/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({c}/{b-a})*(Int(1/(x+{a}),x) -Int(1/(x+{b}),x))}\\\\ &=& \\simplify[std]{({c}/{b-a})*(ln(x+{a})-ln(x+{b}))+C} \\end{eqnarray*}\\]

\n\t", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}