// Numbas version: finer_feedback_settings {"name": "Find indefinite integrals of hyperbolic functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "description": ""}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "name": "b", "description": ""}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "name": "b1", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "name": "a", "description": ""}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s2", "description": ""}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "name": "a1", "description": ""}}, "ungrouped_variables": ["a", "b", "s2", "s1", "a1", "b1"], "name": "Find indefinite integrals of hyperbolic functions", "functions": {}, "preamble": {"css": "", "js": ""}, "parts": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

$f(x)=\\simplify[std]{ cosh({a}x+{b})}$

\n

$\\displaystyle{\\int f(x)\\;dx=\\;\\;}$[[0]]

\n

You must include the constant of integration as $C$.

\n

Input all numbers as integers or fractions – not as decimals.

", "unitTests": [], "sortAnswers": false, "scripts": {}, "gaps": [{"answer": "(1 / {a}) * sinh({a} * x + {b})+C", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "vsetRangePoints": 5, "expectedVariableNames": [], "unitTests": [], "notallowed": {"message": "

Input all numbers as integers or fractions – not as decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "marks": 3, "showFeedbackIcon": true, "scripts": {}, "answerSimplification": "std", "type": "jme", "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "showPreview": true, "variableReplacements": [], "failureRate": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "showFeedbackIcon": true}, {"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

$f(x)=\\simplify[std]{x*sinh({a1}x+{b1})}$

\n

$\\displaystyle{\\int f(x)\\;dx=\\;\\;}$[[0]]

\n

Include the constant of integration as $C$.

\n

Input all numbers as integers or fractions – not as decimals.

\n

Please note that if you want to enter a function of the form $xf(x)$ then enter as $x*f(x)$.

", "unitTests": [], "sortAnswers": false, "scripts": {}, "gaps": [{"answer": "(1 / {a1}) * x * cosh({a1} * x + {b1}) - (1 / ({a1} ^ 2)) * sinh({a1} * x + {b1})+C", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "vsetRangePoints": 5, "expectedVariableNames": ["x", "c"], "unitTests": [], "notallowed": {"message": "

Input all numbers as integers or fractions – not as decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "checkingType": "absdiff", "checkVariableNames": true, "vsetRange": [0, 1], "marks": 3, "showFeedbackIcon": true, "scripts": {}, "answerSimplification": "std", "type": "jme", "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "showPreview": true, "variableReplacements": [], "failureRate": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "showFeedbackIcon": true}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "\n\n\n

Integrate the following functions $f(x)$.

\n\n\n", "tags": ["Calculus", "calculus", "checked2015", "cosh", "hyperbolic functions", "indefinite integration", "integrating hyperbolic functions", "integration", "integration by parts", "MAS1601", "mas1601", "sinh"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": [], "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Find  $\\displaystyle \\int\\cosh(ax+b)\\;dx,\\;\\;\\int x\\sinh(cx+d)\\;dx$.

\n

Advice tidied up.

"}, "advice": "

a)  Since $\\int \\cosh(x)=\\sinh(x)+C$ it follows that:
\\[\\int \\simplify[std]{cosh({a}x+{b})}\\;dx = \\frac{1}{\\var{a}}\\simplify[std]{ sinh({a}x+{b})}+C\\]

\n

b)  We perform integration by parts:

\n

Using $\\int u dv = uv - \\int v du$ where:

\n

\\[\\begin{eqnarray*}  &u&=x     \\Rightarrow     du = dx \\\\  &dv& = \\simplify[std]{sinh({a1}x+{b1})}   \\Rightarrow     v= \\simplify[std]{((cosh({a1}x+{b1}))/{a1})}\\end{eqnarray*} \\] 

\n

Hence we have:
\\[\\begin{eqnarray*} \\int \\simplify[std]{x*sinh({a1}x+{b1})}\\;dx&=&\\frac{1}{\\var{a1}}\\simplify[std]{x*cosh({a1}x+{b1})}-\\frac{1}{\\var{a1}} \\int \\simplify[std]{cosh({a1}x+{b1})}\\;dx\\\\ &=&\\frac{1}{\\var{a1}}\\simplify[std]{x*cosh({a1}x+{b1})}-\\frac{1}{\\var{a1^2}}\\simplify[std]{sinh({a1}x+{b1})}+C \\end{eqnarray*} \\]

", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}