// Numbas version: finer_feedback_settings {"name": "Integral of improper polynomial fraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sn*random(1..9)", "description": "", "name": "n"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sm*random(1..9)", "description": "", "name": "m"}, "sm": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "sm"}, "sp": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "sp"}, "p": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sp*random(1..9)", "description": "", "name": "p"}, "sn": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "sn"}}, "ungrouped_variables": ["sp", "m", "n", "p", "sn", "sm"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Integral of improper polynomial fraction", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{n}/2*x^2 + {m} * x + {p} * arctan(x)+C", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input all numbers as fractions or integers and not decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 2, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

$\\displaystyle \\int f(x)\\;dx=\\;\\;$[[0]]

\n

Input the arbitrary constant of integration as $C$.

\n ", "showCorrectAnswer": true, "marks": 0}], "statement": "\n

Integrate the following function $f(x)$

\n

\\[f(x)=\\simplify[std]{({n}x^3+{m}x^2+{n}x +{m+p})/(1+x^2)}\\]

\n

Note that you can only enter inverse trigonometric functions as $\\arcsin(x),\\;\\;\\arccos(x),\\;\\;\\arctan(x)$

\n

Input all numbers as fractions or integers and not decimals.

\n ", "tags": ["arctan", "Calculus", "checked2015", "degree of a polynomial", "improper rational polynomials", "indefinite integration", "integration", "inverse trigonometric functions", "MAS1601", "polynomial division"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t

29/06/2012:

\n \t\t


Added tags. Tidied up display of prompt.

\n \t\t

19/07/2012:

\n \t\t

Added description.

\n \t\t

Checked calculation.

\n \t\t

Slight change to Advice, replaced \"long division\" by \"whatever way you like\" so not to prempt the method used by the student.

\n \t\t

23/07/2012:

\n \t\t

\n \t\t

Solution always requires arctan(x) and not arcsin(x) or arccos(x). Is this on purpose?

\n \t\t

 

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int \\frac{nx^3+mx^2+nx + p}{1+x^2}\\;dx$. Solution involves $\\arctan$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n

Since the degree of the numerator of $f(x)$ is greater than the denominator, $f(x)$ is improper.

\n

First, perform a division in whatever way you like, so that $f(x)$ can be rewritten in the form $\\displaystyle{f(x)=\\simplify[std]{{n}x+{m}+{p}/(1+x^2)}}$.

\n

Each term of this expression can then be integrated using standard functions (to within the arbitrary constant) to give:

\n

$\\displaystyle{\\int f(x)\\;dx=\\simplify[std]{{n}x^2/2+{m}x+{p}arctan(x)} +C}$

\n ", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}